SCH: AI-Enhanced Multimodal Sensor-on-a-chip for Alzheimer's Disease Detection
SCH:用于阿尔茨海默病检测的人工智能增强型多模态芯片传感器
基本信息
- 批准号:10685378
- 负责人:
- 金额:$ 29.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcademiaAddressAffectAlgorithmic SoftwareAlzheimer disease detectionAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisAlzheimer’s disease biomarkerAmyloid ProteinsArtificial IntelligenceBindingBiological MarkersBiosensing TechniquesBiosensorBloodBody FluidsCessation of lifeCollaborationsDataData ScientistDementiaDetectionDevicesDrug IndustryElderlyEnzyme-Linked Immunosorbent AssayFeedbackFiber OpticsGeneral HospitalsGoalsHealthHumanImmunohistochemistryImpaired cognitionInterdisciplinary StudyKnowledgeLearningMachine LearningMagnetic Resonance ImagingMass Spectrum AnalysisMassachusettsMeasuresMechanicsMemoryMethodsMiningMissionModalityModelingNanotechnologyNeurodegenerative DisordersOpticsOutputPatientsPerformancePersonal SatisfactionPersonalityPositioning AttributeRaman Spectrum AnalysisResearchResearch PersonnelSalivaScientistSensitivity and SpecificitySignal TransductionSoftware ToolsSomatotypeSource CodeStatistical Data InterpretationSystemTechniquesTrainingWeightWestern BlottingWorkanalytical toolapolipoprotein E-4artificial intelligence algorithmbiomarker discoverybiomarker identificationcantilevercostdata repositorydeep learning algorithmdesigndesign verificationdetection methoddetection platformeffectiveness evaluationflexibilityhealth care service organizationheterogenous dataimprovedinnovationinsightmachine learning frameworkmachine learning methodmedical schoolsminimally invasivemultimodalitynanosensorsnoveloptical fiberphotonicsprogramssensorspecific biomarkerstau Proteinstomographytwo-dimensionalwaveguide
项目摘要
We propose a new research paradigm aimed at addressing scientific questions in both biosensing and
machine learning for the early prediction of Alzheimer's disease (AD), and at solving a grand challenge in
the identification of minimally-invasive AD biomarkers in tear, saliva, and blood. Our goal is to develop a
novel and minimally-invasive system that integrates a multimodal biosensing platform and a machine
learning framework, which synergistically work together to significantly enhance the detection accuracy.
The program will pioneer a novel Multimodal Optical, Mechanical, Electrochemical Nano-sensor with Twodimensional
material Amplification (MOMENTA) platform for sensitive and selective detection of AD
biomarkers. The sensor outputs are used for training the new Hierarchical Multimodal Machine Learning
(HMML) framework, which not only automatically integrates the heterogeneous data from different
modalities but also ranks the importance of different biosensors and biomarkers for AD prediction.
Moreover, the framework is able to identify potential new biomarkers based on a statistical analysis of the
learned weights on the input signals and provide feedback information to further improve the MOMENTA
platform design. This interdisciplinary research brings together materials scientists who create new twodimensional
(2D) material platforms for sensor enhancement, nanotechnology and device experts who
advance chip-scale sensor platforms, data scientists who analyze data with machine learning methods to
target early prediction of AD, and AD experts who help to identify potentially new AD biomarkers. The
machine-learning-enhanced multi-modal sensor system will not only offer major performance boost
compared to state-of-the-art, but also yield critical insights on new biomarker discovery for AD diagnosis at
an early stage.
我们提出了一种新的研究范式,旨在解决生物传感和生物传感领域的科学问题。
机器学习用于早期预测阿尔茨海默氏病(AD),并解决一个巨大的挑战
泪液、唾液和血液中微创 AD 生物标志物的鉴定。我们的目标是开发一个
集成多模式生物传感平台和机器的新颖微创系统
学习框架,协同工作以显着提高检测精度。
该项目将开创一种新型多模态光学、机械、电化学纳米传感器,具有二维
用于灵敏和选择性检测 AD 的材料放大 (MOMENTA) 平台
生物标志物。传感器输出用于训练新的分层多模式机器学习
(HMML)框架,不仅自动集成来自不同领域的异构数据
模式,还对不同生物传感器和生物标志物对 AD 预测的重要性进行了排名。
此外,该框架能够根据对生物标志物的统计分析来识别潜在的新生物标志物。
学习输入信号的权重并提供反馈信息以进一步改进 MOMENTA
平台设计。这项跨学科研究汇集了材料科学家,他们创造了新的二维材料
用于传感器增强、纳米技术和设备专家的 (2D) 材料平台
先进的芯片级传感器平台、使用机器学习方法分析数据的数据科学家
针对 AD 的早期预测,以及帮助识别潜在的新 AD 生物标志物的 AD 专家。这
机器学习增强型多模态传感器系统不仅会带来显着的性能提升
与最先进的技术相比,还对 AD 诊断的新生物标志物发现产生了重要见解
早期阶段。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Recent Advances in 2D Material Theory, Synthesis, Properties, and Applications.
二维材料理论、合成、性能和应用的最新进展。
- DOI:10.1021/acsnano.2c12759
- 发表时间:2023-05-23
- 期刊:
- 影响因子:17.1
- 作者:Yu‐Chuan Lin;R. Torsi;Rehan Younas;C. Hinkle;A. Rigosi;H. Hill;Kunyan Zhang;Shengxi Huang
- 通讯作者:Shengxi Huang
ClinicalRisk: A New Therapy-related Clinical Trial Dataset for Predicting Trial Status and Failure Reasons.
ClinicalRisk:用于预测试验状态和失败原因的新治疗相关临床试验数据集。
- DOI:
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Luo, Junyu;Qiao, Zhi;Glass, Lucas;Xiao, Cao;Ma, Fenglong
- 通讯作者:Ma, Fenglong
pADR: Towards Personalized Adverse Drug Reaction Prediction by Modeling Multi-sourced Data.
pADR:通过对多源数据建模实现个性化药物不良反应预测。
- DOI:
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Luo, Junyu;Qian, Cheng;Wang, Xiaochen;Glass, Lucas;Ma, Fenglong
- 通讯作者:Ma, Fenglong
BRITISH BIOMEDICAL BULLETIN
英国生物医学通报
- DOI:
- 发表时间:2024-09-14
- 期刊:
- 影响因子:0
- 作者:J. Patil;P. Gurav;Ravindra Kulkarni;Sachin Jadhav;S. M;ave;ave;Meghanath B. Shete;V. Chipade
- 通讯作者:V. Chipade
Bidirectional Representation Learning from Transformers using Multimodal Electronic Health Record Data for Chronic to Predict Depression
使用多模态电子健康记录数据从变形金刚中进行双向表示学习以预测抑郁症
- DOI:
- 发表时间:2020-09-26
- 期刊:
- 影响因子:0
- 作者:Yiwen Meng;W. Speier;Michael K. Ong;C. Arnold
- 通讯作者:C. Arnold
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juejun Hu其他文献
Juejun Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juejun Hu', 18)}}的其他基金
SCH: AI-Enhanced Multimodal Sensor-on-a-chip for Alzheimer's Disease Detection
SCH:用于阿尔茨海默病检测的人工智能增强型多模态芯片传感器
- 批准号:
10437992 - 财政年份:2022
- 资助金额:
$ 29.77万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The role of nigrostriatal and striatal cell subtype signaling in behavioral impairments related to schizophrenia
黑质纹状体和纹状体细胞亚型信号传导在精神分裂症相关行为障碍中的作用
- 批准号:
10751224 - 财政年份:2024
- 资助金额:
$ 29.77万 - 项目类别:
2023 Neurotrophic Mechanisms in Health and Disease
2023 健康与疾病中的神经营养机制
- 批准号:
10654336 - 财政年份:2023
- 资助金额:
$ 29.77万 - 项目类别:
FORUM ON MEDICAL AND PUBLIC HEALTH PREPAREDNESS FOR DISASTERS AND EMERGENCIES AND ACTION COLLABORATIVE ON DISASTERS/PUBLIC HEALTH EMERGENCY RESEARCH
灾害和紧急情况医疗和公共卫生防备论坛以及灾害/公共卫生紧急情况研究行动合作
- 批准号:
10937101 - 财政年份:2023
- 资助金额:
$ 29.77万 - 项目类别:
Microphysiological Systems to Study Hypoxic Cardiac Injury
研究缺氧性心脏损伤的微生理系统
- 批准号:
10591258 - 财政年份:2023
- 资助金额:
$ 29.77万 - 项目类别: