3D Bioprinting of Strong Living Scaffolds
坚固生命支架的 3D 生物打印
基本信息
- 批准号:10682568
- 负责人:
- 金额:$ 25.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAllograftingAnatomyBiocompatible MaterialsBiologicalBiological ProcessBiological ProductsBiomechanicsBlood VesselsCartilageCategoriesCell SurvivalCellsChemicalsChemistryClinical ResearchComplexDataDefectDepositionDevelopmentDiffusionDiseaseElasticityEmulsionsEncapsulatedEngineeringFamilyFibroblastsFibrocartilagesFormulationGelGelatinGoalsGrowth FactorHydrogelsIn VitroInfiltrationInjuryInkKneeLigamentsLiquid substanceMechanicsMedicalMeniscus structure of jointMethodsModalityModelingModulusMusculoskeletalNatural regenerationOilsOrganic solvent productOrthopedic SurgeryOryctolagus cuniculusPatientsPhasePolymersProliferatingPropertyQuality of lifeRegenerative engineeringResearchRiskSedimentation processTechnologyTemperatureTendon structureTestingTissuesWaterWorkadipose derived stem cellaqueousbioinkbiomaterial compatibilitybioprintingbioscaffoldbonecartilage regenerationclinical practicecytotoxicdesignfabricationfallsimplantationin vivoinnovationmanufacturemechanical propertiesmeetingsnovelpreservationrepairedscaffoldshear stresssoundstem cellstissue regenerationtissue repairtissue support frametransforming growth factor beta3
项目摘要
Project Summary
The regeneration of damaged or diseased tissues that serve biomechanical functions, such as musculoskeletal
tissues, has been a long-standing challenge in clinical practice and research. Regenerative engineering offers
a promising alternative to auto- or allografts for tissue regeneration by combining biomaterial scaffolds, viable
cells, and bioactive factors. Engineering scaffolds that provide both mechanical support and biological activities
is critical for regenerating such tissues with biomechanical functions. However, currently existing scaffolds,
which include either tough polymers with limited bioactivities or soft hydrogels with poor mechanical properties,
fall short of meeting both mechanical and biological needs. To address this issue, we propose the development
of a novel family of emulsion bioinks to enable the 3D bioprinting of strong living scaffolds with built-in
mechanical robustness and desirable biological functions for tissue regeneration. The encapsulation of
biologics (cells and bioactive factors) within scaffolds presents an attractive strategy to equip the scaffolds with
desired biological functions. The major roadblocks to encapsulate biologics within tough polymers include their
lack of bioactivity and the frequent usage of harmful chemicals, such as organic solvents and/or toxic reactants.
In this study, a water-in-oil emulsion bioink is designed by dispersing an aqueous internal phase of hydrogel
droplets (microgels) with encapsulated biologics in an external phase of tough polymer solution. It is
hypothesized that microgels will protect the functions of encapsulated biologics from harmful chemicals by
limiting their diffusion from the external to internal phases. The solidification of tough polymer around each
dispersed microgel during 3D-bioprinting will mainly contribute to mechanical robustness of the final scaffold.
The preliminary data demonstrates that: 1) >95% viability of fibroblast cells is achieved in an emulsion bioink;
and 2) the resulting emulsion scaffolds afford both the mechanical robustness (elastic moduli 5-40 MPa)
and >90% cell viability. This project will initiate with the development of cytocompatible and bioprintable cell-
laden emulsion bioinks, followed by characterization of 3D-bioprinted emulsion scaffolds, and conclude with
validating the functions of encapsulated bioactive factors and cells within scaffolds for meniscus regeneration
as a test model. This model will include assessments of proliferation, fibrochondrogenic differentiation in vitro,
and neo-menisci formation in vivo. Overall, our approach presents a new method to produce mechanically
strong and biologically functional living scaffolds by integrating emulsion chemistry and 3D bioprinting
technology. We anticipate that this work will have a broad and significant impact on regenerative engineering
by benefiting repair or regeneration of broad-spectrum tissues with biomechanical functions.
项目概要
具有生物力学功能的受损或患病组织的再生,例如肌肉骨骼
组织,一直是临床实践和研究中长期存在的挑战。再生工程提供
通过结合生物材料支架,成为自体或同种异体移植组织再生的有前景的替代方案,可行
细胞和生物活性因子。既提供机械支撑又提供生物活性的工程支架
对于再生具有生物力学功能的组织至关重要。但目前现有的脚手架,
其中包括生物活性有限的坚韧聚合物或机械性能较差的软水凝胶,
无法满足机械和生物需求。为了解决这个问题,我们建议开发
新型乳液生物墨水家族的诞生,可实现具有内置功能的强生命支架的 3D 生物打印
机械鲁棒性和组织再生所需的生物功能。的封装
支架内的生物制剂(细胞和生物活性因子)提供了一种有吸引力的策略来装备支架
所需的生物学功能。将生物制剂封装在坚韧聚合物中的主要障碍包括
缺乏生物活性和频繁使用有害化学物质,例如有机溶剂和/或有毒反应物。
在这项研究中,通过分散水凝胶的水性内相设计了油包水乳液生物墨水
将生物制剂封装在坚韧聚合物溶液的外相中的液滴(微凝胶)。这是
假设微凝胶将通过以下方式保护封装生物制品的功能免受有害化学物质的影响
限制它们从外相到内相的扩散。每个周围都有坚韧的聚合物凝固
3D生物打印过程中分散的微凝胶将主要有助于最终支架的机械坚固性。
初步数据表明:1) 乳液生物墨水中成纤维细胞的活力达到 >95%;
2) 所得乳液支架具有机械强度(弹性模量 5-40 MPa)
和 >90% 的细胞活力。该项目将从开发细胞相容性和可生物打印的细胞开始
负载乳液生物墨水,然后是 3D 生物打印乳液支架的表征,最后得出
验证支架内封装的生物活性因子和细胞对半月板再生的功能
作为测试模型。该模型将包括体外增殖、纤维软骨分化的评估,
和体内新半月板的形成。总的来说,我们的方法提出了一种机械生产的新方法
通过整合乳液化学和 3D 生物打印,打造坚固且具有生物功能的生命支架
技术。我们预计这项工作将对再生工程产生广泛而重大的影响
通过有益于具有生物力学功能的广谱组织的修复或再生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yonghui Ding其他文献
Yonghui Ding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yonghui Ding', 18)}}的其他基金
相似国自然基金
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高面能量密度全3D打印微型锌离子混合电容器的构筑与储能机理研究
- 批准号:22309176
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
丝内/丝间空洞对3D打印连续纤维复合材料损伤机理影响机制与分析方法
- 批准号:52375150
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印单向流场诱导构筑多级有序电磁屏蔽结构及调控机理研究
- 批准号:52303036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
- 批准号:
10734465 - 财政年份:2023
- 资助金额:
$ 25.41万 - 项目类别:
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
- 批准号:
10736961 - 财政年份:2023
- 资助金额:
$ 25.41万 - 项目类别:
A novel breast cancer therapy based on secreted protein ligands from CD36+ fibroblasts
基于 CD36 成纤维细胞分泌蛋白配体的新型乳腺癌疗法
- 批准号:
10635290 - 财政年份:2023
- 资助金额:
$ 25.41万 - 项目类别:
3D Printed Microfluidic Artificial Lung for Veteran Rehabilitation
用于退伍军人康复的 3D 打印微流控人工肺
- 批准号:
10629531 - 财政年份:2023
- 资助金额:
$ 25.41万 - 项目类别:
Multi-parametric anthropomorphic MRI Phantoms technology for reliable and reproducible structural and quantitative MRI
多参数拟人 MRI Phantoms 技术可实现可靠且可重复的结构和定量 MRI
- 批准号:
10729161 - 财政年份:2023
- 资助金额:
$ 25.41万 - 项目类别: