Imputing quantitative mass spectrometry proteomics data using non-negative matrix factorization
使用非负矩阵分解估算定量质谱蛋白质组数据
基本信息
- 批准号:10677226
- 负责人:
- 金额:$ 3.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-16 至 2026-04-15
- 项目状态:未结题
- 来源:
- 关键词:AddressAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease patientAlzheimer’s disease biomarkerAmyloid beta-ProteinBenchmarkingBiologicalBiologyBrain regionCellsCerebrospinal FluidComputer softwareComputing MethodologiesDataData DiscoveryData SetDimensionsDiseaseFASTK GeneFundingFutureGeneticJointsKnowledgeLabelLearningLeftLinkMachine LearningMalignant NeoplasmsMass Spectrum AnalysisMeasurementMeasuresMessenger RNAMethodsMolecularMolecular and Cellular BiologyNetwork-basedNeural Network SimulationNeurodegenerative DisordersNoisePathogenesisPatientsPatternPeptidesPerformancePersonsPrevalenceProceduresProcessPrognosisProteinsProteomeProteomicsPublic HealthPublishingReproducibilityResearch PersonnelRunningSamplingSoftware ToolsTherapeutic InterventionTrainingUnited States National Institutes of HealthWorkage relatedasymptomatic Alzheimer&aposs diseasebiomarker discoverybiomarker identificationcomorbiditycomputerized data processingdeep neural networkdifferential expressionexperimental studyglobal healthhyperphosphorylated tauimprovedionizationlaser capture microdissectionlearning strategylight weightmachine learning methodmalformationmass spectrometernovelopen sourcepatient biomarkersphosphoproteomicsspecific biomarkersstatistical learningtherapeutic targetvirtual
项目摘要
PROJECT SUMMARY/ABSTRACT
Alzheimer's disease (AD) represents an emerging global health threat and is a expected to double in prevalence by
2050. AD is a disease of malformed proteins, and significant progress has been made characterizing the AD proteome
with mass spectrometery. However, data missingness represents a significant barrier to the interpretation of existing
AD mass spectrometry experiments.
Missingness refers to peptides or proteins that are present in the biological sample but are not detected by the mass
spectrometer due to various technical factors. This project will address missingness by developing machine learning
methods for imputing, or estimating, missing values in quantitative mass spectrometry data. The project will develop
two separate imputation methods, one using non-negative matrix factorization and the other deep neural networks.
These imputation methods will increase the reproducibility and statistical power of mass spectrometry experiments
and will enable new discoveries in existing proteomics experiments. These imputation methods will be applicable to
virtually any kind of mass spectrometry experiment – tandem mass tag, data dependent acquisition, data independent
acquisition, spectral counts, label-free quantification, etc. These imputation methods will be released as lightweight,
open-source and easy-to-use software packages and may be incorporated into existing data processing workflows.
I will demonstrate the utility of these imputation methods by reanalysing data from several existing AD proteomic
studies. My imputation methods will identify novel differentially expressed proteins, co-expression modules and AD
biomarkers in these existing datasets. I will also analyze unpublished data-independent acquisition (DIA) proteomics
data derived from AD patient cerebrospinal fluid samples. Here I will focus on identifying biomarkers that differentiate
between patients based on genetic background and co-morbidity status. I will also identify biomarkers of patients with
asymptomatic AD.
The imputation methods developed by this proposal will enable future discoveries by independent AD researchers.
This proposal aligns with the NIA Strategic Direction seeking to "identify and understand the genetic, molecular and
cellular mechanisms underlying the pathogenesis of AD."
项目概要/摘要
阿尔茨海默病 (AD) 是一种新兴的全球健康威胁,预计患病率将在 2019 年翻倍
2050. AD 是一种畸形蛋白质疾病,AD 蛋白质组表征已取得重大进展
然而,数据缺失对现有的解释构成了重大障碍。
AD质谱实验。
缺失是指生物样品中存在但未通过质量检测到的肽或蛋白质
该项目将通过开发机器学习来解决由于各种技术因素而导致的光谱仪缺失问题。
该项目将开发用于估算定量质谱数据缺失值的方法。
两种独立的插补方法,一种使用非负矩阵分解,另一种使用深度神经网络。
这些插补方法将提高质谱实验的再现性和统计能力
并将在现有的蛋白质组学实验中实现新的发现。
几乎任何类型的质谱实验 - 串联质量标签、数据相关采集、数据独立
采集、光谱计数、无标记量化等。这些插补方法将以轻量级、
开源且易于使用的软件包,可以合并到现有的数据处理工作负载中。
我将通过重新分析几个现有 AD 蛋白质组学的数据来演示这些插补方法的实用性
我的插补方法将识别新的差异表达蛋白、共表达模块和 AD。
我还将分析这些现有数据集中的生物标记物,与数据无关的采集(DIA)蛋白质组学。
来自 AD 患者脑脊液样本的数据在这里我将重点关注识别区分的生物标志物。
我还将根据遗传背景和共病状态来确定患者的生物标志物。
无症状AD。
该提案开发的插补方法将使独立 AD 研究人员未来的发现成为可能。
该提案与 NIA 的战略方向一致,旨在“识别和理解遗传、分子和
AD 发病机制的细胞机制。”
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluating Proteomics Imputation Methods with Improved Criteria.
使用改进的标准评估蛋白质组插补方法。
- DOI:
- 发表时间:2023-11-03
- 期刊:
- 影响因子:4.4
- 作者:Harris, Lincoln;Fondrie, William E;Oh, Sewoong;Noble, William S
- 通讯作者:Noble, William S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lincoln Jeffery Harris其他文献
Lincoln Jeffery Harris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
阿尔茨海默病高危风险基因加速认知老化的脑神经机制研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
β-羟丁酸通过hnRNP A1调控Oct4抑制星形胶质细胞衰老影响AD的发生
- 批准号:31900807
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
胰岛素抵抗导致神经元衰老的分子机制及在老年痴呆疾病中的作用研究
- 批准号:91849205
- 批准年份:2018
- 资助金额:200.0 万元
- 项目类别:重大研究计划
载脂蛋白E4基因加速认知老化的脑神经机制研究
- 批准号:31700997
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
慢性睡眠障碍引起阿尔茨海默病tau蛋白病理变化及其表观遗传学机制研究
- 批准号:81771521
- 批准年份:2017
- 资助金额:54.0 万元
- 项目类别:面上项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 3.82万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 3.82万 - 项目类别:
Analysis of Alzheimer's disease studies that feature truncated or interval-censored covariates
对具有截断或区间删失协变量的阿尔茨海默病研究的分析
- 批准号:
10725225 - 财政年份:2023
- 资助金额:
$ 3.82万 - 项目类别:
Barriers to early identification of dementia in a safety net healthcare system
安全网医疗保健系统中早期识别痴呆症的障碍
- 批准号:
10728164 - 财政年份:2023
- 资助金额:
$ 3.82万 - 项目类别: