Three-dimensional field effect transistor arrays as a platform technology for intracellular electrophysiology recording.
三维场效应晶体管阵列作为细胞内电生理学记录的平台技术。
基本信息
- 批准号:10673096
- 负责人:
- 金额:$ 30.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAlzheimer&aposs DiseaseBehaviorBiologyBrainCalcium ChannelCardiacCardiac MyocytesCell membraneCell physiologyCellsCommunicationDedicationsDiffusionDiseaseElectronicsElectrophysiology (science)EndocrineEpilepsyEpisodic ataxiaEventFunctional disorderGlycocalyxIon ChannelIon PumpsIonsKineticsKnowledgeLocationMeasuresMotionNeuronsNoiseParkinson DiseasePhospholipidsPhysiologyPositioning AttributePotassium ChannelResolutionSamplingScienceSignal TransductionSodium ChannelSpeedSystemTestingTimeTissuesTransistorscell behaviorclinical practicedesignelectrical potentialinnovationinsightmechanical propertiesnervous system disordersensorsignal processingspatiotemporalsurface coatingtechnology platformtoolvoltage
项目摘要
PROJECT SUMMARY
Most cellular behaviors and functions rely on cell signaling. A direct approach to detect this event is to record
cellular electrical potentials that are associated with various ionic kinetics during signal processing. It has been
shown that a wide range of high profile diseases, such as epilepsy, episodic ataxia, Alzheimer's, and
Parkinson's, may result from dysfunction of voltage-gated sodium, potassium, and calcium channels. Although
qualitative knowledge of the motions of these ions has been well studied, a quantitative understanding is still
missing because of the lack of tools that would allow high-spatiotemporal-resolution sampling of ion motions
inside cells. My group is dedicated to developing a soft electronic interface for cells and tissues. This synthetic
electronic interface will have similar mechanical properties to the biology, and can organically fuse with the
target cells and tissues, which will not only result in higher signal to noise ratio but also longer recording time
than conventional rigid and bulky recording systems. This five-year project aims to develop an innovative
cellular interface that is composed of an array of highly sensitive three-dimensional field effect transistor (FET)-
based sensors on a stretchable substrate. We use this innovative cellular interface to test the hypothesis that
ionic kinetics, including the speeds of ionic diffusion through ion channels in the cell membrane, ion drift driven
by ion pumps, and inter-cellular signal propagation, entail crucial quantitative information associated with
disorders of electrogenic cells, such as neurons, cardiomyocytes, and electrically excitable endocrine cells.
The sensors can simultaneously record different positions of a single cell or among different cells in a cellular
network, thus enabling us to measure and calculate the time- or speed-related kinetic factors of the ions (i.e.,
the time at which the ions move in or out of the cell membrane and the speed at which they do, respectively).
Also, using an FET design, we can amplify the recorded signal directly at the targeting location, realizing as
much as ten-fold signal amplification. Furthermore, we can differentiate the specific ionic species that are
actively functioning inside and outside of the cells by coating the surfaces of the FET sensors with phospholipid
bilayers that have the corresponding ion channels, allowing the specific ions to permeate the cell membrane,
which would result in a change in electrical potential that could be recorded by the FET sensors. The
information acquired will help gain new insights in cellular communications, with profound implications for brain
sciences, cardiac physiology, and clinical practices.
!
项目概要
大多数细胞行为和功能依赖于细胞信号传导。检测此事件的直接方法是记录
信号处理过程中与各种离子动力学相关的细胞电位。它一直
研究表明,许多引人注目的疾病,如癫痫、阵发性共济失调、阿尔茨海默病和
帕金森病可能是由电压门控钠、钾和钙通道功能障碍引起的。虽然
这些离子运动的定性知识已经得到了很好的研究,但定量的理解仍然存在
由于缺乏可以对离子运动进行高时空分辨率采样的工具而缺失
细胞内。我的团队致力于开发细胞和组织的软电子接口。这种合成的
电子界面将具有与生物体相似的机械特性,并能与生物体有机融合
目标细胞和组织,这不仅会导致更高的信噪比,而且会导致更长的记录时间
比传统的刚性和笨重的记录系统。这个为期五年的项目旨在开发一个创新的
由高灵敏度三维场效应晶体管 (FET) 阵列组成的蜂窝接口 -
基于可拉伸基板上的传感器。我们使用这种创新的细胞接口来测试以下假设:
离子动力学,包括离子通过细胞膜离子通道的扩散速度、离子漂移驱动
通过离子泵和细胞间信号传播,需要与
产电细胞(例如神经元、心肌细胞和电兴奋内分泌细胞)的疾病。
传感器可以同时记录单个细胞或细胞中不同细胞之间的不同位置
网络,从而使我们能够测量和计算离子的时间或速度相关的动力学因素(即,
离子移入或移出细胞膜的时间及其速度)。
此外,使用 FET 设计,我们可以直接在目标位置放大记录的信号,实现为
信号放大十倍。此外,我们可以区分特定的离子种类
通过在 FET 传感器表面涂上磷脂,在细胞内外积极发挥作用
具有相应离子通道的双层,允许特定离子渗透细胞膜,
这将导致 FET 传感器记录的电位变化。这
获得的信息将有助于获得细胞通信的新见解,对大脑产生深远的影响
科学、心脏生理学和临床实践。
!
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Three-dimensional transistor arrays for intra- and inter-cellular recording.
用于细胞内和细胞间记录的三维晶体管阵列。
- DOI:
- 发表时间:2022-03
- 期刊:
- 影响因子:38.3
- 作者:Gu, Yue;Wang, Chunfeng;Kim, Namheon;Zhang, Jingxin;Wang, Tsui Min;Stowe, Jennifer;Nasiri, Rohollah;Li, Jinfeng;Zhang, Daibo;Yang, Albert;Hsu, Leo Huan;Dai, Xiaochuan;Mu, Jing;Liu, Zheyuan;Lin, Muyang;Li, Weixin;Wang, Chonghe;Gong, H
- 通讯作者:Gong, H
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sheng Xu其他文献
Sheng Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sheng Xu', 18)}}的其他基金
A Wearable Ultrasonic System for Automatic, Continuous, and Noninvasive Monitoring of Central Blood Pressure
用于自动、连续、无创监测中心血压的可穿戴超声波系统
- 批准号:
10631219 - 财政年份:2022
- 资助金额:
$ 30.57万 - 项目类别:
A Wearable Ultrasonic System for Automatic, Continuous, and Noninvasive Monitoring of Central Blood Pressure
用于自动、连续、无创监测中心血压的可穿戴超声波系统
- 批准号:
10504949 - 财政年份:2022
- 资助金额:
$ 30.57万 - 项目类别:
Three-dimensional field effect transistor arrays as a platform technology for intracellular electrophysiology recording.
三维场效应晶体管阵列作为细胞内电生理学记录的平台技术。
- 批准号:
10437859 - 财政年份:2020
- 资助金额:
$ 30.57万 - 项目类别:
Three-dimensional field effect transistor arrays as a platform technology for intracellular electrophysiology recording.
三维场效应晶体管阵列作为细胞内电生理学记录的平台技术。
- 批准号:
10239078 - 财政年份:2020
- 资助金额:
$ 30.57万 - 项目类别:
Three-dimensional field effect transistor arrays as a platform technology for intracellular electrophysiology recording.
三维场效应晶体管阵列作为细胞内电生理学记录的平台技术。
- 批准号:
10029579 - 财政年份:2020
- 资助金额:
$ 30.57万 - 项目类别:
Noninvasive realtime neuron-modulation by stretchable, large ultrasonic transducer arrays.
通过可拉伸的大型超声换能器阵列进行无创实时神经元调节。
- 批准号:
10121612 - 财政年份:2019
- 资助金额:
$ 30.57万 - 项目类别:
Recording central blood flow velocity waveform by conformal ultrasonic devices
利用适形超声装置记录中心血流速度波形
- 批准号:
9924597 - 财政年份:2019
- 资助金额:
$ 30.57万 - 项目类别:
Diagnosing Small Joints by Soft Ultrasound Probes
通过软超声探头诊断小关节
- 批准号:
9437235 - 财政年份:2017
- 资助金额:
$ 30.57万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
MBP酶切L1CAM介导的线粒体自噬在阿尔茨海默病中的作用和机制
- 批准号:81901296
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
- 批准号:
10555899 - 财政年份:2023
- 资助金额:
$ 30.57万 - 项目类别:
Understanding the mechanistic link between vascular dysfunction and Alzheimers disease-related protein accumulation in the medial temporal lobe
了解血管功能障碍与内侧颞叶阿尔茨海默病相关蛋白积累之间的机制联系
- 批准号:
10736523 - 财政年份:2023
- 资助金额:
$ 30.57万 - 项目类别:
Mitochondrial dysfunction and tau pathology in Alzheimer's disease
阿尔茨海默病中的线粒体功能障碍和 tau 病理学
- 批准号:
10805120 - 财政年份:2023
- 资助金额:
$ 30.57万 - 项目类别:
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
- 批准号:
10667903 - 财政年份:2023
- 资助金额:
$ 30.57万 - 项目类别: