Flavoenzymes in Pyrimidine Metabolism
嘧啶代谢中的黄素酶
基本信息
- 批准号:7743760
- 负责人:
- 金额:$ 27.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-01-01 至 2011-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressBacteriaBasic ScienceBehaviorBindingCatalysisCellsChemicalsChemistryCollaborationsColorCommunitiesCycloserineDNAData AnalysesDeuteriumDihydroorotate Dehydrogenase InhibitorDihydroorotate dehydrogenaseDropsDrug Delivery SystemsElectron TransportEnzyme Inhibitor DrugsEnzyme InhibitorsEnzymesFlavinsFlavoproteinsFundingGeneticGoalsGrantHeartHumanInvestigationIsotopesKansasKineticsLeadLigandsMalignant neoplasm of lungMeasuresModelingMutagenesisOutcomePaperPathway interactionsPharmaceutical PreparationsProductivityProteinsProtozoaPublicationsPublished CommentPublishingRNAReactionReportingRiboflavinRoleSmall Interfering RNASorting - Cell MovementSourceSpecificitySpectrum AnalysisSpeedStructureSubstrate SpecificityThermotoga maritimaThymidylate SynthaseTransfer RNATranslatingUniversitiesUracilVitaminsWorkWritingbasecancer cellcell growthchemical reactiondesigndihydrouracildimerdrug candidatedrug developmentinhibitor/antagonistinnovationinterestmedical schoolsmutantpathogenic bacteriapractical applicationprofessorpyrimidine metabolismrapid growthreaction rate (chemical)research studysingle molecule
项目摘要
DESCRIPTION (provided by applicant): Pyrimidine metabolism is vital, making it important to understand at the chemical level and making it an excellent target for drug development. We will investigate the reaction mechanisms of dihydroorotate dehydrogenases (DHODs), flavin-dependent enzymes in the biosynthetic pathway, and the evolutionarily related dihydrouridine synthases (DUSs), which reduce specific uracils during the maturation of tRNA. Our goal is to elucidate reaction mechanisms and origins of substrate or ligand specificity in ways ranging from characterizing transition states to uncovering dynamic behavior in catalysis. The results of these studies will facilitate the design of enzyme inhibitors, which may be developed into useful drug candidates. Transition state structures are at the heart of enzymatic catalysis. Previously we found significant differences between the transition states for flavin reduction in Class 1A and Class 2 DHODs, indicating the need for a higher level of understanding. The transition states for flavin reduction in the three classes of DHODs will be probed by measuring 13C and 15N kinetic isotope effects. Stopped-flow experiments will be used to determine deuterium isotope effects on the reduction of a Class 1B DHOD. Complementary stopped-flow and single-molecule studies on a Class 1B DHOD will enable us to dissect factors controlling the chemistry at the flavins, intramolecular electron transfer, and dynamics. We have already discovered two inhibitors that bind specifically to Class 1A DHODs which occurs in some pathogenic bacteria and protozoa. Our kinetic and structural studies suggest a new molecule to be synthesized and studied. However, the reason that our inhibitors do not bind to Class 2 enzymes remains an enigma. Random mutagenesis will be used to create functional Class 1A mutants that are no longer inhibited, and conversely, Class 2 mutants that are inhibited. Interesting enzymes will be studied in detail thermodynamically, kinetically, and structurally. Related chemistry is performed by the DUSs, flavoproteins which are structurally related to DHODs and reduce specific uracil moieties in maturing tRNA. The function of dihydrouracil remains uncertain, but its widespread occurrence suggests an important role, and it has recently been shown to be important in lung cancer. We will determine the substrate specificities of selected model DUSs and probe the interactions of the protein and tRNA by chemical and biophysical means.
Vitamin B2 transfers electrons when certain proteins speed chemical reactions that create or modify the building-blocks of DNA or RNA the molecules which carry genetic information. Compounds that specifically interfere with these vital reactions in infectious bacteria could be used as drugs. In order to design such compounds, we will study the reactions of several proteins at a very high level of detail by observing the color changes associated with the vitamin. Our studies of the rates of the chemical reactions will identify important parts of the proteins, how they move during reactions, how they speed the synthesis of products, and how these reactions might be blocked.
描述(由申请人提供):嘧啶的代谢至关重要,因此在化学水平上了解并成为药物开发的绝佳目标变得重要。我们将研究生物合成途径中的二氢肽脱氢酶(DHOD),黄素依赖性酶以及进化相关的二氢丙啶合酶(DUSS)的反应机制,这些酶在TRNA成熟过程中降低了特定的尿素。我们的目标是以从表征过渡状态到催化中的动态行为的方式来阐明底物或配体特异性的反应机制和起源。这些研究的结果将促进酶抑制剂的设计,这些酶抑制剂可能会发展为有用的候选药物。过渡状态结构是酶促催化的核心。以前,我们发现过渡态在1A类和2类DHOD中减少黄素的过渡状态之间存在显着差异,这表明需要更高的理解水平。通过测量13C和15N动力学同位素效应,将探测三类DHOD的黄素减少的过渡状态。停止流量实验将用于确定同位素对1B类DHOD的还原的影响。对1B类DHOD的互补停止流量和单分子研究将使我们能够解剖控制黄素的化学因素,分子内电子转移和动力学。我们已经发现了两个在某些致病细菌和原生动物中特异性结合的抑制剂。我们的动力学研究和结构研究提出了合成和研究的新分子。但是,我们的抑制剂不与2类酶结合的原因仍然是一个谜。随机诱变将用于创建不再抑制的功能性1a突变体,而相反,是被抑制的2类突变体。有趣的酶将在热力学,动力学和结构上进行详细研究。相关的化学是由杜斯(Duss)进行的,即在结构上与DHOD相关的黄素蛋白,并减少成熟tRNA中的特定尿嘧啶部分。二氢酸的功能仍然不确定,但其广泛的发生表明了重要作用,并且最近已证明它在肺癌中很重要。我们将通过化学和生物物理手段来确定选定模型duss的底物特异性,并探测蛋白质和tRNA的相互作用。
当某些蛋白质加速化学反应时,维生素B2会转移电子,从而创建或修改DNA或RNA的建筑块,携带遗传信息的分子。特异性干扰感染细菌中这些重要反应的化合物可以用作药物。为了设计这种化合物,我们将通过观察与维生素相关的颜色变化来研究几种蛋白质的反应。我们对化学反应速率的研究将确定蛋白质的重要部分,它们在反应过程中的移动,如何加快产品的合成以及如何阻止这些反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRUCE A PALFEY其他文献
BRUCE A PALFEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRUCE A PALFEY', 18)}}的其他基金
2010-2011 Enzymes, Coenzymes & Metabolic Pathways Gordon Research Conference
2010-2011 酶、辅酶
- 批准号:
7903557 - 财政年份:2010
- 资助金额:
$ 27.76万 - 项目类别:
2010-2011 Enzymes, Coenzymes & Metabolic Pathways Gordon Research Conference
2010-2011 酶、辅酶
- 批准号:
8068318 - 财政年份:2010
- 资助金额:
$ 27.76万 - 项目类别:
相似国自然基金
基于共价有机框架的噬菌体-光催化协同靶向抗菌策略用于顽固性细菌感染的研究
- 批准号:22378279
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肠道细菌Clostridium sp来源的3-吲哚丙酸在绝经后骨质疏松症中的作用及机制研究
- 批准号:82304154
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
外生菌根真菌和菌丝际细菌协同改善山核桃磷营养的机制
- 批准号:32301562
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SOCS家族成员调控鲤科鱼类特有兼具抗病毒和抗细菌功能的TLR5免疫信号通路节点分子及其机制解析-以草鱼为例
- 批准号:32373164
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
微藻-细菌协同降解抗生素及其共适应机制
- 批准号:42377367
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
2023 Forsyth Symposium: The Oral Microbiome: Past, Present, and Future
2023 年福赛斯研讨会:口腔微生物组:过去、现在和未来
- 批准号:
10753824 - 财政年份:2023
- 资助金额:
$ 27.76万 - 项目类别:
Cancer Therapeutics and Host Response Research Program
癌症治疗和宿主反应研究计划
- 批准号:
10625756 - 财政年份:2023
- 资助金额:
$ 27.76万 - 项目类别:
Facility Management, Maintenance and Operation Core
设施管理、维护和运营核心
- 批准号:
10793908 - 财政年份:2023
- 资助金额:
$ 27.76万 - 项目类别:
Development of Engineered Native Bacteria as a Tool for Functional Manipulation of the Gut Microbiome
开发工程原生细菌作为肠道微生物组功能操纵的工具
- 批准号:
10737475 - 财政年份:2023
- 资助金额:
$ 27.76万 - 项目类别: