Intravascular microstructural, chemical and biomechanical characterization of coronary plaques
冠状动脉斑块的血管内微观结构、化学和生物力学特征
基本信息
- 批准号:10669254
- 负责人:
- 金额:$ 72.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAngiographyArterial Fatty StreakAtherosclerosisBiomechanicsCadaverCardiacCatheterizationCathetersCause of DeathCessation of lifeChemicalsClinicalClinical ResearchConsumptionCoronary ArteriosclerosisCoronary arteryCoronary heart diseaseDevelopmentDiseaseDistalElementsEnvironmentEventFamily suidaeFundingFutureGoalsHeartHeart DiseasesHumanImageImaging DeviceImaging technologyInterventionLasersLateralLesionLinkMeasuresMechanicsMethodsModelingMolecularMyocardial InfarctionNear-Infrared SpectroscopyObstructionOptical Coherence TomographyOpticsPathologyPathway interactionsPatientsProceduresPropertyResearchResolutionRiskRoboticsRuptureSourceSpecificitySpeedStentsStructureSystemTechniquesTechnologyTestingThinnessTimeTranslationsValidationbiomechanical testcoronary plaqueelastographyhuman subjectimaging platformimproved outcomeindividual patientinstrumentationmeternoveloptical imagingoptimal treatmentspercutaneous coronary interventionpreventive interventionresponsesignal processingtechnology developmenttechnology validationtooltreatment strategy
项目摘要
Heart disease is the leading cause of death in the US; the most prevalent type of heart disease is caused
by atherosclerosis, the thickening of the vessel wall and creation of atherosclerotic plaque. Intravascular
optical coherence tomography (IV-OCT) has enabled the imaging of coronary artery structures with un-
precedented detail, and can be used to evaluate the response to percutaneous coronary intervention
when treating atherosclerotic lesions. However, there remains a significant need to assess plaque vul-
nerability: the determination of which mild lesions are likely to produce cardiac events in the future,
and thus require immediate preventative interventional measures. Among lesion types, thin-cap fi-
broatheromas (TCFA) are of particular concern since they are believed to be at increased risk of rup-
ture; however, studies have found that only a fraction of TCFAs rupture. Although the likelihood of
rupture has been linked to its mechanical stability, its chemical composition, and its microstructure,
there is currently no technology capable of the biomechanical profiling of plaques in individual patients
during intervention [without the need for time-consuming finite element modeling (FEM)] and the
available methods for determining composition either lack specificity or spatial resolution.
To address this significant need unmet by current intravascular imaging technology, we will develop an
all-optical imaging platform that will profoundly broaden the access to accurate biomechanical, chemi-
cal and microstructural profiling of coronary plaques in individual patients. Our novel platform will en-
able a transformational leap in the current capability for comprehensive plaque characterization, in-
cluding the assessment of plaque composition and vulnerability. We will leverage new ultra-fast laser
sources to develop IV-OCT at 2,000 frames per second, enabling a host of powerful post-processing
techniques that will enhance comprehensive characterization of plaques. In Aim 1 we will develop the
enabling hardware to realize high-speed intravascular imaging. In Aim 2 we will develop hardware and
signal processing to enable microstructural profiling at the 10×302 µm3 (depth×lateral) scale, chemical
profiling at the 80×802 µm3 scale, and biomechanical profiling at the 60×602 µm3 scale in an all-optical
technique without the need for FEM. In Aim 3 we will develop a novel validation platform based on a
soft-robotics cardiac simulator of the biomechanical environment of the human beating heart.
Our single imaging platform will facilitate clinical studies to determine the parameters of plaque vulner-
ability, opening the door to the identification of optimal treatment strategies. Initially, it will become an
invaluable research tool in atherosclerosis; later, it will have the potential to guide intervention in indi-
vidual patients. After completion of the technological developments at the end of the proposed funding
cycle, our platform will be ready for testing in human subjects.
心脏病是美国最主要的死亡原因;
动脉粥样硬化、血管壁增厚和血管内动脉粥样硬化斑块的形成。
光学相干断层扫描 (IV-OCT) 能够对冠状动脉结构进行非成像成像
先例细节,可用于评估经皮冠状动脉介入治疗的反应
然而,在治疗动脉粥样硬化病变时,仍然非常需要评估斑块损伤。
nerability:确定哪些轻微病变可能在未来产生心脏事件,
因此需要立即采取预防性干预措施。
呼吸瘤(TCFA)尤其值得关注,因为它们被认为具有更高的破裂风险。
然而,研究发现只有一小部分 TCFA 有破裂的可能性。
破裂与其机械稳定性、化学成分和微观结构有关,
目前尚无技术能够对个体患者的斑块进行生物力学分析
在干预期间[无需耗时的有限元建模(FEM)]和
用于确定成分的可用方法要么缺乏特异性,要么缺乏空间分辨率。
为了解决当前血管内成像技术无法满足的这一重大需求,我们将开发一种
全光学成像平台将深刻拓宽准确的生物力学、化学
我们的新平台将实现个体患者冠状动脉斑块的钙和微观结构分析。
能够在当前全面斑块表征的能力上实现转型飞跃,
包括评估牙菌斑成分和脆弱性,我们将利用新型超快激光。
以每秒 2,000 帧的速度开发 IV-OCT,从而实现一系列强大的后处理
在目标 1 中,我们将开发增强斑块综合表征的技术。
在目标 2 中,我们将开发硬件并实现高速血管内成像。
信号处理可实现 10×302 µm3(深度×横向)尺度的微观结构分析,化学
全光学系统中 80×802 µm3 尺度的分析和 60×602 µm3 尺度的生物力学分析
在目标 3 中,我们将开发一种基于 FEM 的新型验证平台。
人类跳动心脏的生物力学环境的软机器人心脏模拟器。
我们的单一成像平台将促进临床研究,以确定斑块脆弱性的参数
能力,为最佳识别治疗策略打开了大门。
动脉粥样硬化的宝贵研究工具;以后,它将有可能指导个体干预
个别患者在完成技术开发后建议资助。
周期后,我们的平台将准备好进行人体测试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nestor Uribe-Patarroyo其他文献
Nestor Uribe-Patarroyo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nestor Uribe-Patarroyo', 18)}}的其他基金
Blood flow-based guidance and diagnostics using OCT
使用 OCT 基于血流的指导和诊断
- 批准号:
10424917 - 财政年份:2017
- 资助金额:
$ 72.83万 - 项目类别:
相似国自然基金
冠状小微血管超声微泡造影多灌注峰参量三维高时空分辨成像
- 批准号:12374444
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于超声造影血流灌注智能定量系统明确血管正常化“窗口期”提升肺癌免疫检查点抑制剂疗效的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
针对活体微血管成像的时空融合运动衬度X射线造影术
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超声造影评价SOCS3通过miRNAs靶向介导的自噬途径调控血管新生对缺血性脑卒中的作用研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
在超广角眼底血管荧光造影上自动化精确测量糖尿病视网膜病变的血管改变及其临床应用
- 批准号:81900863
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
IgE antibody responses to the oligosaccharide galactose-alpha-1,3-galactose (alpha-gal) in murine and human atherosclerosis
IgE 抗体对小鼠和人类动脉粥样硬化中寡糖半乳糖-α-1,3-半乳糖 (α-gal) 的反应
- 批准号:
10818690 - 财政年份:2022
- 资助金额:
$ 72.83万 - 项目类别:
IgE antibody responses to the oligosaccharide galactose-alpha-1,3-galactose (alpha-gal) in murine and human atherosclerosis
IgE 抗体对小鼠和人类动脉粥样硬化中寡糖半乳糖-α-1,3-半乳糖 (α-gal) 的反应
- 批准号:
10536408 - 财政年份:2022
- 资助金额:
$ 72.83万 - 项目类别:
IgE antibody responses to the oligosaccharide galactose-alpha-1,3-galactose (alpha-gal) in murine and human atherosclerosis
IgE 抗体对小鼠和人类动脉粥样硬化中寡糖半乳糖-α-1,3-半乳糖 (α-gal) 的反应
- 批准号:
10851057 - 财政年份:2022
- 资助金额:
$ 72.83万 - 项目类别:
IgE antibody responses to the oligosaccharide galactose-alpha-1,3-galactose (alpha-gal) in murine and human atherosclerosis
IgE 抗体对小鼠和人类动脉粥样硬化中寡糖半乳糖-α-1,3-半乳糖 (α-gal) 的反应
- 批准号:
10649670 - 财政年份:2022
- 资助金额:
$ 72.83万 - 项目类别:
Coronary Atherosclerosis and Immune Activation in HIV and Tuberculosis Infection
HIV 和结核感染中的冠状动脉粥样硬化和免疫激活
- 批准号:
10675714 - 财政年份:2022
- 资助金额:
$ 72.83万 - 项目类别: