TRD1: Functional Imaging
TRD1:功能成像
基本信息
- 批准号:10650835
- 负责人:
- 金额:$ 30.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-21 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAdvanced DevelopmentAngiographyAnimal ModelAnimalsAxonBiologicalBlood VesselsBlood capillariesCaliberClinicalCommunitiesDataDevelopmentDiabetic RetinopathyDiagnosisDimensionsDiseaseDisease modelEarly DiagnosisFunctional ImagingGlaucomaHumanImageImaging TechniquesIndividualMethodsModalityMonitorMusNeuroprotective AgentsOphthalmologyOpticsPathway interactionsPerfusionPhysicsPupilResearchResolutionRetinaRodent ModelSamplingSignal TransductionStructureTechniquesTechnologyThree-Dimensional ImagingTissuesTomogramTranslationsTumor BiologyVisualizationadaptive opticsangiogenesisanimal imagingaxonal degenerationclinical applicationdensityimprovedin vivointerestlight scatteringmultiple sclerosis treatmentnovelpolarimetrypre-clinicalpreservationretinal axonretinal imagingsignal processingtooltumor microenvironmentvirtual
项目摘要
Project Summary
TRD 1
The overarching theme of TRD 1 is to develop powerful new tools for functional imaging: specifically, the devel-
opment of advanced post-processing methods to 1) enhance endogenous contrast in polarization-sensitive
OCT tissue polarimetry, and 2) transform OCT angiography from a pseudo- to a fully-3D technique by dramati-
cally improving its cross-sectional quality and depth resolution. Current post-processing in OCT polarimetry
(PS-OCT) and angiography (OCTA) imparts significant resolution loss—roughly one order of magnitude—gen-
erating contrast with poor spatial resolution compared to the originating OCT data. There is a need for process-
ing techniques capable of preserving spatial resolution to enable a broad range of applications that are
presently outside the reach of OCT technology. This project will develop a probabilistic processing framework
based on the physics of light scattering and OCT image formation that leverages from the similarity of func-
tional signals typically present in biological sample tomograms. This framework will allow for estimation of the
underlying structure and associated contrast—or function—without compromising spatial resolution.
Aim 1 addresses the need for high-resolution cross-sectional polarimetric imaging of the living retina. Proba-
bilistic PS-OCT offers a new pathway to preserve the originating hardware’s resolution, alleviating the need for
increased optical resolution, limited by pupil size in human and animals and accompanied by an impractical re-
duction in the depth of field. This novel capability, combined with PS-OCT hardware equipped with adaptive op-
tics, will enable the determination of polarimetric parameters of individual axonal bundles in the retina. It will
permit PS-OCT to sensitively track retinal axonal degeneration in vivo, thus accelerating the development of
neuroprotective agents for the treatment of multiple sclerosis that rely on rodent models of this disease.
Aim 2 addresses the need to improve the spatial resolution and quality of OCTA in both preclinical and clinical
applications by further extending the probabilistic framework to the OCT signal dynamics. OCTA is also show-
ing significant promise in ophthalmology for the potential use in the early diagnosis and monitoring of diseases
including glaucoma and diabetic retinopathy; preclinical use include imaging animal models to improve under-
standing of tumor biology. However, its poor cross-sectional quality and resolution restricts OCTA to a pseudo-
3D imaging technique, with a depth resolution most commonly four to eight times poorer than in the originating
OCT tomogram, thus limiting angiographic analysis to en face and layer projections in virtually all applications.
Probabilistic OCTA will improve the lacking depth resolution of conventional OCTA, overcoming the insensitivity
to small capillaries and the distortion of true vessel dimensions, which currently undermine caliber and vascu-
lar-network quantitative metrics of great clinical interest in ophthalmology. OCTA with high cross-sectional qual-
ity would amplify its utility in the understanding of the three-dimensional tumor microenvironment, and unlock
the power of volumetric vascular-network metrics in preclinical and clinical applications.
项目概要
TRD 1
TRD 1 的首要主题是开发强大的功能成像新工具:具体来说,开发
采用先进的后处理方法,1) 增强偏振敏感的内生对比度
OCT 组织偏振测量,以及 2) 通过戏剧化将 OCT 血管造影从伪技术转变为全 3D 技术
显着提高其横截面质量和深度分辨率。
(PS-OCT)和血管造影(OCTA)造成显着的分辨率损失——大约一个数量级——gen-
与原始 OCT 数据相比,空间分辨率较差,因此需要进行处理。
荷兰国际集团的技术能够保持空间分辨率,以实现广泛的应用
目前超出了 OCT 技术的能力范围,该项目将开发一个概率处理框架。
基于光散射和 OCT 图像形成的物理原理,利用功能的相似性
该框架将允许估计通常存在于生物样本断层图中的信号。
底层结构和相关的对比度或功能,而不影响空间分辨率。
目标 1 解决活体视网膜高分辨率横截面偏振成像的需求。
bilistic PS-OCT 提供了一种保留原始硬件分辨率的新途径,从而减轻了对
增加的光学分辨率,受到人类和动物瞳孔大小的限制,并伴随着不切实际的重新
这种新颖的功能与配备自适应运算的 PS-OCT 硬件相结合。
抽动,将能够确定视网膜中各个轴突束的偏振参数。
允许 PS-OCT 灵敏地追踪体内视网膜轴突变性,从而加速
用于治疗多发性硬化症的神经保护剂依赖于这种疾病的啮齿动物模型。
目标 2 解决了在临床前和临床中提高 OCTA 空间分辨率和质量的需求
还展示了通过进一步将概率框架扩展到 OCT 信号动力学的应用。
眼科在疾病早期诊断和监测方面的潜在用途具有重大前景
包括青光眼和糖尿病视网膜病变;临床前使用包括对动物模型进行成像以改善
然而,其较差的横截面质量和分辨率将 OCTA 限制为伪-
3D 成像技术的深度分辨率通常比原始成像技术差四到八倍
OCT 断层扫描,从而将血管造影分析限制为几乎所有应用中的面投影和层投影。
概率OCTA将改善传统OCTA深度分辨率的不足,克服不敏感的问题
小毛细血管和真实血管尺寸的扭曲,目前破坏了口径和血管
lar-网络定量指标在眼科领域具有很大的临床意义,具有高横截面质量。
ity 将增强其在理解三维肿瘤微环境方面的效用,并解锁
体积血管网络指标在临床前和临床应用中的力量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nestor Uribe-Patarroyo其他文献
Nestor Uribe-Patarroyo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nestor Uribe-Patarroyo', 18)}}的其他基金
Intravascular microstructural, chemical and biomechanical characterization of coronary plaques
冠状动脉斑块的血管内微观结构、化学和生物力学特征
- 批准号:
10669254 - 财政年份:2022
- 资助金额:
$ 30.14万 - 项目类别:
Blood flow-based guidance and diagnostics using OCT
使用 OCT 基于血流的指导和诊断
- 批准号:
10424917 - 财政年份:2017
- 资助金额:
$ 30.14万 - 项目类别:
相似国自然基金
基于增广拉格朗日函数的加速分裂算法及其应用研究
- 批准号:12371300
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
肠菌源性丁酸上调IL-22促进肠干细胞增殖加速放射性肠损伤修复的机制研究
- 批准号:82304065
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
- 批准号:32372384
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于联邦学习自动超参调整的数据流通赋能加速研究
- 批准号:62302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
M2 TAMs分泌的OGT通过促进糖酵解过程加速肝细胞癌恶性生物学行为的机制研究
- 批准号:82360529
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 30.14万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 30.14万 - 项目类别:
Elucidating the role of pericytes in angiogenesis in the brain using a tissue-engineered microvessel model
使用组织工程微血管模型阐明周细胞在大脑血管生成中的作用
- 批准号:
10648177 - 财政年份:2023
- 资助金额:
$ 30.14万 - 项目类别:
Loss of transcriptional homeostasis of genes lacking CpG islands during aging
衰老过程中缺乏 CpG 岛的基因转录稳态丧失
- 批准号:
10814562 - 财政年份:2023
- 资助金额:
$ 30.14万 - 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
- 批准号:
10679809 - 财政年份:2023
- 资助金额:
$ 30.14万 - 项目类别: