Brain-Wide Genome Editing Enabled by Intravenously Administered Non-Viral Nanovectors As a Potential Therapy for Alzheimer’s Disease
静脉注射非病毒纳米载体实现全脑基因组编辑作为阿尔茨海默病的潜在疗法
基本信息
- 批准号:10630541
- 负责人:
- 金额:$ 186.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-15 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAlzheimer&aposs DiseaseAlzheimer&aposs disease therapyAmyloid beta-Protein PrecursorBiodistributionBiological AssayBiological ProductsBlood - brain barrier anatomyBrainBrain regionBypassCRISPR/Cas technologyChemistryClustered Regularly Interspaced Short Palindromic RepeatsCollaborationsDNADataDisease ProgressionElderlyEncapsulatedEngineeringGene TargetingGenesGeneticGenetic EngineeringGenomeGlucoseGlutathioneGuide RNAHippocampusHumanIntravenousKnock-inLigandsMessenger RNAMonitorMusNeurodegenerative DisordersNeuronsNon-Viral VectorNucleic AcidsOrganParticle SizePathologicPeptidesPharmacologic SubstancePopulationPreclinical TestingProductionPropertyProteinsResolutionRibonucleoproteinsSafetySilicon DioxideStimulusSurfaceSynapsinsSystemTechniquesTherapeuticTherapeutic StudiesTreatment EfficacyUnited States National Institutes of HealthViral VectorWild Type Mouseamyloid imagingbehavior changebehavior testbiomaterial compatibilityblood-brain barrier crossingbrain cellcell typedelivery vehicledosagefamilial Alzheimer diseasegene therapygenome editingimaging platformimmunogenicityin vivoinnovationintravenous administrationmouse modelnanocapsulenanovectornovelplasmid DNApreclinical evaluationpreventprogramspromoterrabies virus glycoprotein Gscreeningsystemic toxicitytherapeutically effectivetherapy outcometomographytwo-photon
项目摘要
Project Summary
Currently, there is no effective way to slow down the progress of Alzheimer’s disease (AD) or prevent it. CRISPR
genome editing is a revolutionary and versatile genetic engineering technique, making it possible to treat the
root causes of genetic neurodegenerative diseases (NDDs) such as AD. However, the promise of brain gene
therapy relies on the efficient delivery of biologics to the brain, which is extremely challenging due to the blood-
brain barrier (BBB). To date, in vivo brain gene therapy has mostly been achieved using viral vectors that require
laborious customization and have troublesome safety profiles. Non-viral vectors are largely administered via
intracranial administration, which is invasive and can only enable gene therapy in a small and localized brain
region. Similar to other NDDs, AD affects multiple brain regions. Thus, there is an urgent need to develop efficient
non-viral delivery vehicles capable of bypassing the BBB for safe and efficient brain-wide gene therapy.
The objectives of this project are (1) to engineer glutathione (GSH)-responsive silica nanocapsules (SNCs)
capable of bypassing the BBB and delivering CRISPR genome editors to the whole brain systemically, and (2)
to evaluate the therapeutic efficacy and biosafety of brain-wide genome editing enabled by the optimized SNC
for the treatment of AD using a novel amyloid precursor protein (APP) knock-in AD mouse model and a unique
gene target for APP modulation. The unique SNC possess a long list of desirable properties including versatile
payload types, versatile surface chemistry for ligand conjugation, high payload loading content and efficiency,
small particle sizes, excellent in vivo stability, good biocompatibility, and scalable production. Our preliminary
data has shown that intravenously administered SNCs can efficiently deliver mRNA, DNA, Cas9 mRNA/sgRNA,
and Cas9/gRNA ribonucleoprotein (RNP) to the whole brain of healthy mice with intact BBB.
We aim to further optimize the amounts of the dual brain-targeting ligands (i.e., glucose and rabies virus
glycoprotein (RVG) peptide) and dosages of the SNCs for enhanced brain-wide systemic delivery of two types
of CRISPR genome editors (i.e., (1) Cas9 mRNA/sgRNA, and (2) plasmid DNA with a neuron-specific human
synapsin 1 (SYN1) promoter and expressing both Cas9 and sgRNA). We will further determine their therapeutic
efficacy and biosafety in treating AD using a novel APP knock-in AD mouse model while employing a unique
gene target for APP modulation. The gene editing efficiency and biosafety profiles of the SNC, and the
pathological and behavior changes of the AD mice will be monitored by various techniques including a novel
serial two-photon tomography whole-brain amyloid imaging platform. With promising initial studies, the best-
performing SNC will be submitted to the Preclinical Testing Core of the NIA-sponsored STOP-AD program for
comprehensive preclinical evaluation. This project will pave the road for a new, safe, non-invasive and effective
therapeutic approach for familial AD. Given the modularity and versatility of the SNCs, and ease of targeting
different genes by the CRISPR system, we anticipate that our SNCs will be applicable for a wide range of NDDs.
项目概要
目前,尚无有效的方法可以减缓或预防阿尔茨海默病(AD)的进展。
基因组编辑是一种革命性的、多功能的基因工程技术,使治疗
AD 等遗传性神经退行性疾病 (NDD) 的根本原因是大脑基因的希望。
治疗依赖于将生物制剂有效地输送到大脑,由于血液
迄今为止,体内脑基因治疗主要是使用需要的病毒载体来实现的。
非病毒载体主要通过繁琐的定制和安全性问题进行管理。
颅内给药是侵入性的,只能在较小的局部大脑中进行基因治疗
与其他 NDD 类似,AD 影响多个大脑区域,因此迫切需要开发有效的方法。
能够绕过血脑屏障进行安全有效的全脑基因治疗的非病毒递送载体。
该项目的目标是 (1) 设计谷胱甘肽 (GSH) 响应型二氧化硅纳米胶囊 (SNC)
能够绕过 BBB 并将 CRISPR 基因组编辑系统系统地传递到整个大脑,以及 (2)
评估优化的 SNC 实现的全脑基因组编辑的治疗效果和生物安全性
使用新型淀粉样前体蛋白 (APP) 敲入 AD 小鼠模型和独特的
独特的 SNC 具有一系列理想的特性,包括多功能性。
有效负载类型、用于配体缀合的多功能表面化学、高有效负载负载含量和效率,
粒径小,体内稳定性优异,生物相容性好,可规模化生产。
数据显示,静脉注射 SNC 可以有效递送 mRNA、DNA、Cas9 mRNA/sgRNA、
Cas9/gRNA 核糖核蛋白 (RNP) 作用于具有完整 BBB 的健康小鼠的整个大脑。
我们的目标是进一步优化双脑靶向配体(即葡萄糖和狂犬病病毒)的数量
糖蛋白(RVG)肽)和 SNC 的剂量,用于增强两种类型的全脑系统递送
CRISPR 基因组编辑器(即 (1) Cas9 mRNA/sgRNA,和 (2) 具有神经元特异性人类的质粒 DNA
突触蛋白 1 (SYN1) 启动子并表达 Cas9 和 sgRNA)我们将进一步确定其治疗作用。
使用新型 APP 敲入 AD 小鼠模型治疗 AD 的功效和生物安全性,同时采用独特的
APP 调制的基因靶标。SNC 的基因编辑效率和生物安全性概况。
AD小鼠的病理和行为变化将通过各种技术进行监测,包括一种新颖的技术
串行双光子断层扫描全脑淀粉样蛋白成像平台具有前景良好的初步研究,最好的-
执行 SNC 将提交给 NIA 赞助的 STOP-AD 计划的临床前测试核心
该项目将为新的、安全的、非侵入性的和有效的方法铺平道路。
鉴于 SNC 的模块化和多功能性以及易于靶向性,家族性 AD 的治疗方法。
通过 CRISPR 系统识别不同的基因,我们预计我们的 SNC 将适用于广泛的 NDD。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHAOQIN GONG其他文献
SHAOQIN GONG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHAOQIN GONG', 18)}}的其他基金
Silica Nanocapsule-Mediated Nonviral Delivery of CRISPR Base Editor mRNA and Allele Specific sgRNA for Gene Correction in Leber Congenital Amaurosis
二氧化硅纳米胶囊介导的 CRISPR 碱基编辑器 mRNA 和等位基因特异性 sgRNA 非病毒传递用于 Leber 先天性黑蒙的基因校正
- 批准号:
10668166 - 财政年份:2023
- 资助金额:
$ 186.03万 - 项目类别:
Dual-Stimuli Responsive Antibiotic-Loaded Nanoparticles: A New Strategy to Overcome Antimicrobial Resistance
双刺激响应抗生素负载纳米颗粒:克服抗生素耐药性的新策略
- 批准号:
10703696 - 财政年份:2023
- 资助金额:
$ 186.03万 - 项目类别:
Dual-Stimuli Responsive Antibiotic-Loaded Nanoparticles: A New Strategy to Overcome Antimicrobial Resistance
双刺激响应抗生素负载纳米颗粒:克服抗生素耐药性的新策略
- 批准号:
10703696 - 财政年份:2023
- 资助金额:
$ 186.03万 - 项目类别:
Development of NAD+ loaded nanoparticles as a safe and efficient strategy to combat sepsis.
开发负载 NAD 的纳米粒子作为对抗脓毒症的安全有效策略。
- 批准号:
10448923 - 财政年份:2022
- 资助金额:
$ 186.03万 - 项目类别:
Development of NAD+ loaded nanoparticles as a safe and efficient strategy to combat sepsis.
开发负载 NAD 的纳米粒子作为对抗脓毒症的安全有效策略。
- 批准号:
10612911 - 财政年份:2022
- 资助金额:
$ 186.03万 - 项目类别:
Stimuli-Responsive Polymer-Drug Conjugates: A New Strategy to Fight Antimicrobial Resistance
刺激响应性聚合物药物偶联物:对抗抗菌素耐药性的新策略
- 批准号:
10415193 - 财政年份:2021
- 资助金额:
$ 186.03万 - 项目类别:
Stimuli-Responsive Polymer-Drug Conjugates: A New Strategy to Fight Antimicrobial Resistance
刺激响应性聚合物药物偶联物:对抗抗菌素耐药性的新策略
- 批准号:
10300745 - 财政年份:2021
- 资助金额:
$ 186.03万 - 项目类别:
Targeting PERK: An Endothelium-Protective Stent-Free Strategy for Mitigation of Intimal Hyperplasia After Vascular Surgery
靶向 PERK:一种缓解血管手术后内膜增生的内皮保护性无支架策略
- 批准号:
10320643 - 财政年份:2018
- 资助金额:
$ 186.03万 - 项目类别:
Development of unimolecular nanoparticle-mediated periadventitial drug delivery system for sustained and targeted inhibition of intimal hyperplasia following open vascular reconstruction
开发单分子纳米粒子介导的外膜周围药物递送系统,用于持续和靶向抑制开放血管重建后的内膜增生
- 批准号:
9481524 - 财政年份:2017
- 资助金额:
$ 186.03万 - 项目类别:
Development of unimolecular nanoparticle-mediated periadventitial drug delivery system for sustained and targeted inhibition of intimal hyperplasia following open vascular reconstruction
开发单分子纳米粒子介导的外膜周围药物递送系统,用于持续和靶向抑制开放血管重建后的内膜增生
- 批准号:
9177485 - 财政年份:2016
- 资助金额:
$ 186.03万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
MBP酶切L1CAM介导的线粒体自噬在阿尔茨海默病中的作用和机制
- 批准号:81901296
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 186.03万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 186.03万 - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 186.03万 - 项目类别:
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 186.03万 - 项目类别: