Passive Cavitation Imaging for Guidance and Control of Ultrasound Ablation
用于引导和控制超声消融的被动空化成像
基本信息
- 批准号:7571142
- 负责人:
- 金额:$ 20.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-02-01 至 2011-01-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAccountingAcousticsAlgorithmsCattleClinicalCoagulation ProcessDataDepositionDevelopmentExcisionFamily suidaeFeedbackFrequenciesFurunclesFutureGoalsHeatingHistologicHistologyImageImaging technologyIn SituIn VitroIndividualInvestigationLiverLocationMalignant NeoplasmsMalignant neoplasm of liverMapsMeasurementMeasuresMethodsMicrobubblesMicroscopicModalityModelingNecrosisOutcomePatientsPatternPublic HealthRecurrenceResearchResolutionSafetySalineSignal TransductionSimulateSoft Tissue NeoplasmsSonicationSourceSpecific qualifier valueStatistical ModelsSystemTemperatureTherapeuticThermal Ablation TherapyTimeTissue ViabilityTissuesTransplantationUltrasonicsUltrasonographyacoustic imagingattenuationbasecancer therapyclinical applicationimaging modalityimprovedin vivominimally invasivemortalitynew technologyphysical modelpre-clinicalpublic health relevanceresearch studytumor
项目摘要
DESCRIPTION (provided by applicant): The overall goal of this project is to develop the novel technology of passive cavitation imaging for guidance and control of thermal ablation. This investigation is based on the hypothesis that cavitation, or microbubble activity caused by therapeutic ultrasound beams, can be passively imaged by ultrasound arrays, providing specific information about spatially-dependent sonication intensity, temperature, and tissue viability in vivo. In passive cavitation imaging, ultrasound-induced microbubble activity within tissue is mapped noninvasively from locally occurring acoustic emissions caused by cavitation and boiling. These acoustic emissions are detected passively by an ultrasound imaging array, filtered, and synthetically focused to form images depicting locations and strengths of stable cavitation, inertial cavitation, and tissue boiling throughout the imaged region. Preliminary data indicates that these passive cavitation images can accurately depict spatial profiles of therapeutic ultrasound beams in situ, resolve individual sources of cavitation-induced acoustic emissions, and be used to predict local tissue temperature elevations causing thermal coagulation necrosis. This cavitation imaging technology will provide previously unavailable guidance and control for ultrasound ablation, greatly enhancing this modality for noninvasive and minimally invasive cancer treatment. The proposed research will begin with optimization of methods for passive cavitation imaging, including filtering and beamforming of acoustic emission signals to maximize image resolution, sensitivity, and quantitative accuracy. Optimized passive cavitation imaging methods will be used to map localized stable and inertial cavitation in saline solution and ex vivo liver tissue, measuring cavitation thresholds as functions of temperature and sonication amplitude. Passive cavitation images will be acquired during therapeutic ultrasound exposures both on bovine liver in vitro and porcine liver in vivo. Measured correlations between passive cavitation images, tissue temperature, and tissue histologic changes during ultrasound ablation, with complementary physical modeling and statistical analysis, will guide development of control strategies for ultrasound ablation. Multivariate statistical models based on experimental data will predict local tissue temperature and coagulation based on imaged acoustic emissions in the three bands considered, allowing specification of treatment progress indicators and end points for ultrasound ablation. Feasibility of this approach for closed-loop ultrasound ablation control will be assessed, based on measured accuracy of these new models for prediction of local tissue ablation. Successful completion of this project will show feasibility for future development of a clinical system providing guidance and control of ultrasound ablation by passive cavitation imaging. These guidance and control methods will provide greatly improved efficacy and safety for ultrasound ablation of liver cancer and soft tissue tumors as well as other clinical applications.
PUBLIC HEALTH RELEVANCE: Liver cancer, both primary and metastatic, is a major public health problem, accounting for the largest cancer- related mortality in the world, with only a small fraction of patients eligible for curative resection or transplantation. Minimally invasive and noninvasive ablation methods provide an important alternative but have significant problems with incomplete treatment, tumor recurrence, and complications caused by imprecise treatment. Ultrasound ablation is a particularly promising approach, potentially offering more precise and reliable treatment, but will not realize its full potential without effective feedback, control and image guidance. Our passive cavitation imaging technology has the potential to greatly improve guidance and control of minimally-invasive and noninvasive ultrasound tumor ablation, providing more precise, selective, predictable, and consistent ablation of liver cancer as well as soft tissue tumors and other clinically important targets, and thus fewer complications, reduced tumor recurrence, and improved patient outcomes.
描述(由申请人提供):该项目的总体目标是开发用于引导和控制热消融的被动空化成像新技术。这项研究基于这样的假设:空化作用或由治疗超声波束引起的微泡活动可以通过超声阵列被动成像,提供有关空间依赖性超声处理强度、温度和体内组织活力的具体信息。在被动空化成像中,组织内超声引起的微泡活动被无创地从空化和沸腾引起的局部发生的声发射中绘制出来。这些声发射由超声成像阵列被动检测、过滤并综合聚焦,以形成描绘整个成像区域中稳定空化、惯性空化和组织沸腾的位置和强度的图像。初步数据表明,这些被动空化图像可以准确地描绘原位治疗超声波束的空间轮廓,解析空化引起的声发射的各个来源,并用于预测导致热凝固坏死的局部组织温度升高。这种空化成像技术将为超声消融提供以前无法提供的指导和控制,极大地增强这种无创和微创癌症治疗方式。拟议的研究将从优化被动空化成像方法开始,包括声发射信号的滤波和波束形成,以最大限度地提高图像分辨率、灵敏度和定量精度。优化的被动空化成像方法将用于绘制盐溶液和离体肝组织中的局部稳定和惯性空化图,测量作为温度和超声振幅函数的空化阈值。将在体外牛肝和体内猪肝的治疗性超声暴露期间获取被动空化图像。超声消融期间测量的被动空化图像、组织温度和组织组织学变化之间的相关性,以及补充的物理建模和统计分析,将指导超声消融控制策略的开发。基于实验数据的多元统计模型将根据所考虑的三个频带中的成像声发射来预测局部组织温度和凝血,从而允许指定治疗进度指标和超声消融终点。将根据这些用于预测局部组织消融的新模型的测量精度,评估这种闭环超声消融控制方法的可行性。该项目的成功完成将展示未来开发通过被动空化成像提供超声消融引导和控制的临床系统的可行性。这些引导和控制方法将为肝癌和软组织肿瘤的超声消融以及其他临床应用提供大大提高的疗效和安全性。
公共卫生相关性:肝癌,无论是原发性还是转移性,都是一个重大的公共卫生问题,是世界上癌症相关死亡率最高的癌症,只有一小部分患者适合接受根治性切除或移植。微创和无创消融方法提供了一种重要的选择,但存在治疗不彻底、肿瘤复发以及治疗不精确引起的并发症等严重问题。超声消融是一种特别有前途的方法,有可能提供更精确、更可靠的治疗,但如果没有有效的反馈、控制和图像引导,就无法充分发挥其潜力。我们的被动空化成像技术有潜力极大地改善微创和无创超声肿瘤消融的引导和控制,为肝癌以及软组织肿瘤和其他临床重要靶点提供更精确、选择性、可预测和一致的消融,从而减少并发症、减少肿瘤复发并改善患者预后。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
T Douglas Mast其他文献
T Douglas Mast的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('T Douglas Mast', 18)}}的其他基金
Monitoring and control of human liver cancer ablation using real-time, 3D echo decorrelation imaging
使用实时 3D 回波去相关成像监测和控制人类肝癌消融
- 批准号:
10176156 - 财政年份:2012
- 资助金额:
$ 20.02万 - 项目类别:
Real-time prediction of thermal ablation-induced cell death by echo decorrelation
通过回波去相关实时预测热消融诱导的细胞死亡
- 批准号:
8676729 - 财政年份:2012
- 资助金额:
$ 20.02万 - 项目类别:
Real-time prediction of thermal ablation-induced cell death by echo decorrelation
通过回波去相关实时预测热消融诱导的细胞死亡
- 批准号:
8294016 - 财政年份:2012
- 资助金额:
$ 20.02万 - 项目类别:
Monitoring and control of human liver cancer ablation using real-time, 3D echo decorrelation imaging
使用实时 3D 回波去相关成像监测和控制人类肝癌消融
- 批准号:
9531604 - 财政年份:2012
- 资助金额:
$ 20.02万 - 项目类别:
Real-time prediction of thermal ablation-induced cell death by echo decorrelation
通过回波去相关实时预测热消融诱导的细胞死亡
- 批准号:
8528513 - 财政年份:2012
- 资助金额:
$ 20.02万 - 项目类别:
Monitoring and control of human liver cancer ablation using real-time, 3D echo decorrelation imaging
使用实时 3D 回波去相关成像监测和控制人类肝癌消融
- 批准号:
10006862 - 财政年份:2012
- 资助金额:
$ 20.02万 - 项目类别:
Monitoring and control of human liver cancer ablation using real-time, 3D echo decorrelation imaging
使用实时 3D 回波去相关成像监测和控制人类肝癌消融
- 批准号:
10410489 - 财政年份:2012
- 资助金额:
$ 20.02万 - 项目类别:
Real-time prediction of thermal ablation-induced cell death by echo decorrelation
通过回波去相关实时预测热消融诱导的细胞死亡
- 批准号:
8857112 - 财政年份:2012
- 资助金额:
$ 20.02万 - 项目类别:
Passive Cavitation Imaging for Guidance and Control of Ultrasound Ablation
用于引导和控制超声消融的被动空化成像
- 批准号:
7756672 - 财政年份:2009
- 资助金额:
$ 20.02万 - 项目类别:
相似国自然基金
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
签字注册会计师动态配置问题研究:基于临阵换师视角
- 批准号:72362023
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
异常获利、捐赠与会计信息操纵:基于新冠疫情的准自然实验研究
- 批准号:72372061
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Contrast-Enhanced Ultrasound for Diagnosis and Therapy of Cholangiocarcinoma
超声造影对胆管癌的诊断和治疗
- 批准号:
10356516 - 财政年份:2021
- 资助金额:
$ 20.02万 - 项目类别:
Contrast-Enhanced Ultrasound for Diagnosis and Therapy of Cholangiocarcinoma
超声造影对胆管癌的诊断和治疗
- 批准号:
10532782 - 财政年份:2021
- 资助金额:
$ 20.02万 - 项目类别:
Automated three-dimensional spinal navigation system for chronic pain therapy
用于慢性疼痛治疗的自动化三维脊柱导航系统
- 批准号:
10384241 - 财政年份:2021
- 资助金额:
$ 20.02万 - 项目类别:
Automated three-dimensional spinal navigation system for chronic pain therapy
用于慢性疼痛治疗的自动化三维脊柱导航系统
- 批准号:
10490879 - 财政年份:2021
- 资助金额:
$ 20.02万 - 项目类别:
Noninvasive histotripsy ablation of fibrotic tissue in benign prostatic hyperplasia
良性前列腺增生纤维化组织的无创组织解剖消融
- 批准号:
9815826 - 财政年份:2019
- 资助金额:
$ 20.02万 - 项目类别: