3-Dimensional Fluorescent Imaging on a Chip
芯片上的 3 维荧光成像
基本信息
- 批准号:7712407
- 负责人:
- 金额:$ 18.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmsArtsBackBiologicalBiological AssayCell Culture TechniquesCell SizeCellsCultured CellsDataDevelopmentDevicesDiffuseDisciplineDistantElectronicsElementsEmployee StrikesEngineeringFigs - dietaryFlow CytometryGoalsHandImageInterdisciplinary StudyLightLocationMechanicsMetalsMethodsMicrofluidicsMicroscopeMolecular and Cellular BiologyOpticsOutputPatternPhysicsProcessResearchResearch DesignRunningSamplingScientistScreening procedureSemiconductorsSiliconSoftware ToolsSourceSpatial DistributionSpecimenStructureStudentsSurfaceSystemTechniquesTechnologyTimeTissue SampleTissuesTrainingWorkbasecellular imagingcomputerized data processingcostdesigndesign and constructiondrug discoveryexperiencegraduate studentinstrumentinterestlenslight intensitymanufacturing processmodels and simulationnext generationnovelnovel strategiesparticleprototypepublic health relevancereconstructionsensorsimulationthree dimensional structuretime usetissue culturetissue/cell culturetool
项目摘要
DESCRIPTION (provided by applicant): The overarching goal of this project is to develop a new approach to capturing information about the three- dimensional structure of fluorescent samples. The hardware we develop will be able to capture this information without specialized optics, or indeed without any optical apparatus at all beyond an LED and our chip. As such, this technology has the capacity to reduce the size and cost of imaging-based assays by orders of magnitude. Deployed as part of highly parallel and/or portable instruments, this sensor will dramatically expand the types and amounts of useful data that can be gathered. The specific aims of this project, discussed below, are: 1) development of novel opto-electronic hardware (a CMOS chip) using existing, scalable semiconductor manufacturing; 2) development of data-processing tools for the reconstruction of fluorescent structure from chip output; 3) demonstration of this system for both static and dynamic imaging of fluorescent cells or tissue; and 4) provision of a unique research experience for scientist- engineers in training. The key element that will enable chip-scale lensless imaging is an angle-sensitive pixel manufactured entirely in CMOS. Such a pixel has been demonstrated by the PI's lab, detecting not only light intensity, but also its incident angle. These pixels make use of near-field diffraction patterns generated and filtered by local gratings to only pass light at certain incident angles. This light is detected by local photodiodes, just as in a normal CMOS imager. By combining multiple sub-pixels with different preferred angles, one can construct a full angle-sensitive pixel that is of a similar scale to pixels in existing imagers. The gratings are constructed using the metal wiring layers present in any modern semiconductor process, and the photodiodes use standard semiconductor junctions. Thus arrays of angle-sensitive pixels can be constructed entirely using existing CMOS manufacturing processes identical to those used to build other integrated circuits and imagers. Such chips, can be manufactured at extremely low cost (<$5 apiece) providing a massive reduction in the cost and size of image-based assays. Simulations of arrays of angle-sensitive pixels indicate that they will be able to localize multiple fluorescent sources such as GFP tagged cells distributed in 3-d space. We will design such arrays (to be manufactured through MOSIS) and deploy them in simple micro-fluidic packages to demonstrate their utility in imaging cell and tissue cultures and in high-throughput flow cytometry. Our final goal is to build a centimeter-scale instrument able to image the three-dimensional structure of a fluorescent sample at high frame rates with a manufacturing cost of less than $10. PUBLIC HEALTH RELEVANCE: The goal of this project is to develop very small, very cheap instrument able to image the three- dimensional structure of a biological sample, replacing microscopes for many applications. This capability would enable filed-deployable imaging systems for doctors and scientists away from the lab. Also because of its low cost and small size, this instrument will enable massive parallelization of imaging-based assays, enabling fast screening of large numbers of tissue samples or cell cultures in, for example, drug discovery.
描述(由申请人提供):该项目的总体目标是开发一种新方法来捕获有关荧光样本的三维结构的信息。我们开发的硬件将能够在没有专门光学的情况下捕获此信息,或者实际上根本没有任何光学设备,超出了LED和我们的芯片。因此,该技术具有通过数量级来降低基于成像测定的大小和成本的能力。该传感器被部署为高度并行和/或便携式仪器的一部分,将大大扩展可以收集的有用数据的类型和数量。下面讨论的该项目的具体目的是:1)使用现有的可扩展半导体制造的新型光电硬件(CMOS芯片)开发; 2)开发用于从芯片输出重建荧光结构的数据处理工具; 3)证明该系统用于荧光细胞或组织的静态和动态成像; 4)为培训中的科学家工程师提供独特的研究经验。将使芯片尺度无透镜成像的关键要素是完全在CMO中制造的角度敏感的像素。 PI的实验室已经证明了这样的像素,不仅检测到光强度,还检测到其入射角。这些像素利用近场衍射模式通过局部光栅产生和过滤,只能以某些入射角度传递光。就像在正常的CMOS成像仪中一样,局部光二极管检测到了这种光。通过将多个子像素与不同的优选角度相结合,可以构建一个与现有成像器中像素相似的全角敏感像素。光栅是使用任何现代半导体过程中存在的金属接线层构建的,并且光电二极管使用标准的半导体连接。因此,可以使用现有的CMOS制造过程完全构建角度敏感像素的阵列,该过程与用于构建其他集成电路和成像器的阵列相同。这样的芯片可以以极低的成本制造(每只<5美元),从而大大降低了基于图像的测定的成本和大小。对角度敏感像素的阵列的模拟表明,它们将能够定位多个荧光源,例如分布在3-D空间中的GFP标记的单元。我们将设计此类阵列(通过MOSIS制造),并将它们部署在简单的微富套件中,以证明它们在成像细胞和组织培养物以及高通量流式细胞术中的实用性。我们的最终目标是建立一种厘米规模的仪器,以高框架速率以高框架的价格成像荧光样本的三维结构,制造成本低于10美元。 公共卫生相关性:该项目的目的是开发非常小,非常便宜的仪器,能够对生物样本的三维结构进行成像,从而代替许多应用的显微镜。这种能力将使医生和科学家远离实验室的医生和科学家提供备备票的成像系统。同样,由于其成本较低和尺寸较小,该仪器将使基于成像的测定法的大规模平行化,从而在例如药物发现中快速筛选大量的组织样品或细胞培养物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(3)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alyosha Christopher Molnar其他文献
Alyosha Christopher Molnar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alyosha Christopher Molnar', 18)}}的其他基金
相似国自然基金
基于大数据挖掘与深度学习的中国书法仿写与智能创作的算法研究
- 批准号:61876150
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
艺术作品视觉美学感知特征分析及图像美感效果增强算法研究
- 批准号:61602313
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于笔画构建的中国书画艺术的数字化仿真算法研究
- 批准号:61602190
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
中国画的计算机分析与分类算法研究
- 批准号:61502331
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
沙画艺术的数据场图像分析与演化关键算法研究
- 批准号:61402399
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
In Vivo Photoactoustic Sensing of Lipid Laden Plaque
脂质斑块的体内光声传感
- 批准号:
8964360 - 财政年份:2015
- 资助金额:
$ 18.51万 - 项目类别:
In Vivo Photoactoustic Sensing of Lipid Laden Plaque
脂质斑块的体内光声传感
- 批准号:
9114157 - 财政年份:2015
- 资助金额:
$ 18.51万 - 项目类别:
Superhigh Sensitivity SPECT Imaging with Dense Camera Arrays
使用密集相机阵列进行超高灵敏度 SPECT 成像
- 批准号:
8702789 - 财政年份:2014
- 资助金额:
$ 18.51万 - 项目类别:
Superhigh Sensitivity SPECT Imaging with Dense Camera Arrays
使用密集相机阵列进行超高灵敏度 SPECT 成像
- 批准号:
8814222 - 财政年份:2014
- 资助金额:
$ 18.51万 - 项目类别:
A 4D Traction Force Microscope for the mapping of cellular mechanical stresses
用于绘制细胞机械应力图的 4D 牵引力显微镜
- 批准号:
7762428 - 财政年份:2010
- 资助金额:
$ 18.51万 - 项目类别: