Combined computational and structural studies to create novel macromolecular recognition properties
结合计算和结构研究来创造新的大分子识别特性
基本信息
- 批准号:10643001
- 负责人:
- 金额:$ 21.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAlgorithmsAmino Acid SequenceBehaviorBindingBinding ProteinsBinding SitesBiochemicalBiologicalBlindedComplexComplex MixturesComputer AnalysisComputer ModelsCrystallizationDNADNA BindingDNA-Binding ProteinsDataDissectionDockingDrug DesignElectrostaticsEngineeringEntropyEquilibriumHybridsHydrogen BondingLigand BindingLigandsModelingMolecularMotivationMutagenesisPerformanceProcessPropertyProtein ConformationProtein EngineeringProteinsProtocols documentationResolutionReverse engineeringRunningSamplingScaffolding ProteinSeriesSolventsSpecificityStructureSupervisionSurfaceSystemTandem Repeat SequencesTestingVariantWorkX-Ray Crystallographybasedesignimprovednovelpressureprotein complexprotein foldingprotein structuresmall moleculestatistical and machine learning
项目摘要
PROJECT SUMMARY
The design of macromolecular binding interactions and complexes, and corresponding alteration of binding
specificity, is a challenging endeavor that remains recalcitrant to computational approaches. This is true both
for the creation of protein-protein complexes (which are driven by a enthalpic changes established primarily by
stereochemical complementarity, balanced against large competing entropic changes) and for the redesign of
protein-DNA complexes (which are heavily dependent upon DNA bending, hydrogen-bonds, electrostatic
contacts, and the presence of solvent and counterions throughout the molecular interface).
Over the past several years we have collaborated with several computational groups to help develop and
validate computational approaches for the design and optimization of protein-protein recognition, protein-DNA
recognition, and protein-small molecule recognition. Those studies have contributed to several new
computational engineering approaches, including hybrid strategies that combine ab initio design of protein
folds and binding sites, the ‘Rotamer Interaction Feld’ (RIF) docking protocol for efficient sampling of protein
sequence and conformation, and novel parametric design approaches to create new tandem repeat proteins.
We propose to continue this work through two specific aims to further develop and improve upon
computational approaches for protein design. As part of this project, we will solve atomic resolution crystal
structures of many selected and designed molecular complexes and provide them to our immediate
collaborators as well as to a public structure prediction project, for computational prediction challenges.
Aim 1. We will design and characterize novel self-associating circular tandem repeat proteins (using both de
novo computational design and using high-throughput selections) and then further design them to undergo
ligand-induced protein-protein association. Beyond the challenge of combining protein scaffold design and
ligand binding design, the motivation for this aim is to determine the structural and mechanistic features of
small molecule ligand-binding, and balance of forces, that facilitate ligand-induced protein-protein association.
Aim 2. We will improve our understanding and ability to design novel protein-DNA recognition specificities and
behaviors. To accomplish this, we will: (1) Systematically select and optimize a series of variants of a model
DNA-binding protein, that display altered binding specificity across two regions of partially overlapping
sequential clusters of basepairs and neighboring protein residues. (2) Determine the high-resolution structures
and binding behavior of each construct. (3) Supervise blinded computational efforts, using multiple
approaches, to predict the same structures. (4) Compare and analyze the results of computational predictions
versus multiple computational prediction strategies to define features influencing predictive accuracy.
For both aims, we will further exploit our crystallographic structures by computationally ‘reverse engineering’
each construct using validated protein structures, to further understand the performance of design approaches.
项目概要
大分子结合相互作用和复合物的设计以及相应的结合改变
特异性,是一项具有挑战性的努力,对计算方法来说仍然是顽固的。这都是事实。
用于创建蛋白质-蛋白质复合物(其由主要由建立的焓变驱动)
立体化学互补性,与大的竞争性熵变化相平衡)并重新设计
蛋白质-DNA 复合物(很大程度上依赖于 DNA 弯曲、氢键、静电
接触,以及整个分子界面中溶剂和反离子的存在)。
在过去的几年里,我们与多个计算小组合作,帮助开发和
验证蛋白质-蛋白质识别、蛋白质-DNA 的设计和优化的计算方法
这些研究为一些新的研究做出了贡献。
计算工程方法,包括结合蛋白质从头设计的混合策略
折叠和结合位点,“旋转异构体相互作用场”(RIF) 对接方案,用于高效蛋白质采样
序列和构象,以及新颖的参数设计方法来创建新的串联重复蛋白。
我们建议通过两个具体目标继续这项工作,以进一步发展和改进
作为该项目的一部分,我们将解决原子分辨率晶体问题。
许多选定和设计的分子复合物的结构,并将它们提供给我们直接的
合作者以及公共结构预测项目,以应对计算预测挑战。
目标 1. 我们将设计并表征新型自缔合环状串联蛋白重复序列(使用 de
新计算设计并使用高通量选择),然后进一步设计它们以进行
超越结合蛋白质支架设计和配体诱导的蛋白质-蛋白质关联。
配体结合设计,这一目标的动机是确定配体结合的结构和机制特征
小分子配体结合和力平衡,促进配体诱导的蛋白质-蛋白质结合。
目标 2. 我们将提高设计新型蛋白质-DNA 识别特异性和
为了实现这一目标,我们将:(1)系统地选择和优化模型的一系列变体。
DNA 结合蛋白,在两个部分重叠的区域中表现出结合特异性
碱基对和邻近蛋白质残基的连续簇 (2) 确定高分辨率结构。
(3) 使用多个监督盲法计算工作
(4) 比较和分析计算预测的结果。
与多种计算预测策略来定义影响预测准确性的特征。
为了这两个目标,我们将通过计算“逆向工程”进一步开发我们的晶体结构
每个构建体都使用经过验证的蛋白质结构,以进一步了解设计方法的性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BARRY L. STODDARD其他文献
BARRY L. STODDARD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BARRY L. STODDARD', 18)}}的其他基金
Biophysical and structural studies of protein and enzyme mechanism, evolution, and engineering
蛋白质和酶机制、进化和工程的生物物理和结构研究
- 批准号:
10550521 - 财政年份:2023
- 资助金额:
$ 21.49万 - 项目类别:
Combined computational and structural studies to create novel macromolecular recognition properties
结合计算和结构研究来创造新的大分子识别特性
- 批准号:
10543489 - 财政年份:2021
- 资助金额:
$ 21.49万 - 项目类别:
Combined computational and structural studies to create novel macromolecular recognition properties
结合计算和结构研究来创造新的大分子识别特性
- 批准号:
10372918 - 财政年份:2021
- 资助金额:
$ 21.49万 - 项目类别:
Determination of the basis of ligand binding via engineering and crystallography
通过工程和晶体学确定配体结合的基础
- 批准号:
9134178 - 财政年份:2015
- 资助金额:
$ 21.49万 - 项目类别:
MegaTALS: hyperspecific reagents for targeted gene modification and correction
MegaTALS:用于靶向基因修饰和校正的超特异性试剂
- 批准号:
10080736 - 财政年份:2014
- 资助金额:
$ 21.49万 - 项目类别:
MegaTALS: hyperspecific reagents for targeted gene modification and correction
MegaTALS:用于靶向基因修饰和校正的超特异性试剂
- 批准号:
8629497 - 财政年份:2014
- 资助金额:
$ 21.49万 - 项目类别:
MegaTALS: hyperspecific reagents for targeted gene modification and correction
MegaTALS:用于靶向基因修饰和校正的超特异性试剂
- 批准号:
10312783 - 财政年份:2014
- 资助金额:
$ 21.49万 - 项目类别:
MegaTALS: hyperspecific reagents for targeted gene modification and correction
MegaTALS:用于靶向基因修饰和校正的超特异性试剂
- 批准号:
10615422 - 财政年份:2014
- 资助金额:
$ 21.49万 - 项目类别:
Structural and Biophysical Characterization of Engineered Homing Endonucleases (C
工程化归巢核酸内切酶 (C) 的结构和生物物理表征
- 批准号:
7466691 - 财政年份:2007
- 资助金额:
$ 21.49万 - 项目类别:
Structural and Biophysical Characterization of Engineered Homing Endonucleases (C
工程化归巢核酸内切酶 (C) 的结构和生物物理表征
- 批准号:
7500689 - 财政年份:2007
- 资助金额:
$ 21.49万 - 项目类别:
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Proteasomal recruiters of PAX3-FOXO1 Designed via Sequence-Based Generative Models
通过基于序列的生成模型设计的 PAX3-FOXO1 蛋白酶体招募剂
- 批准号:
10826068 - 财政年份:2023
- 资助金额:
$ 21.49万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 21.49万 - 项目类别:
Coupling Machine Learning with Agent-Based Modeling to Design a Universal Influenza Vaccine
将机器学习与基于代理的建模相结合来设计通用流感疫苗
- 批准号:
10444310 - 财政年份:2022
- 资助金额:
$ 21.49万 - 项目类别:
Coupling Machine Learning with Agent-Based Modeling to Design a Universal Influenza Vaccine
将机器学习与基于代理的建模相结合来设计通用流感疫苗
- 批准号:
10619595 - 财政年份:2022
- 资助金额:
$ 21.49万 - 项目类别:
Software for sequencing human antibody proteins from polyclonal immune responses
用于对多克隆免疫反应中的人类抗体蛋白进行测序的软件
- 批准号:
10352420 - 财政年份:2021
- 资助金额:
$ 21.49万 - 项目类别: