Determination of the basis of ligand binding via engineering and crystallography

通过工程和晶体学确定配体结合的基础

基本信息

项目摘要

 DESCRIPTION (provided by applicant): A significant problem in molecular biology is our inability to accurately calculate, model and predict protein-ligand binding affinities, even when provided a high-resolution structure of the actual complex. This problem is made evident across a wide body of experimentation and literature, including (1) the poor performance of algorithms used to calculate binding affinities from structures, (2) disagreement on the physical basis for high affinity ligand binding for exceptionally well-studied proteins such as streptavidin, and (3) difficulties associated with engineering novel ligand-binding proteins. Attempts to understand the basis for tight, specific ligand binding by dissecting naturally evolved ligand binding protein, while informative, have not produced the ability to accurately predict binding affinities from structures, or to directly compute the structure of novel ligand binding proteins. Engineered proteins offer a possible advantage as alternative systems for the examination of ligand binding mechanisms. While the energetic and structural parameters that are used to create them may be inaccurate, those terms are nonetheless precisely defined during the engineering process and can be systematically altered during an iterative design project. In addition, protein engineering allows investigators to create large numbers of designed proteins against many precisely defined ligands, and then to identify the most interesting and informative constructs for detailed structural and physical analyses. The Specific Aims of this project are: (1) To determine common structural and mechanistic features of successfully designed ligand binding proteins, and to compare those results against designs that display unexpected patterns of ligand binding affinities and specificities. (2) To assess whether constraints that are placed on the design of ligand binding proteins behave as intended. In particular, this study will examine whether two fundamental components of ligand- protein designs (shape complementarity, which attempts to enforce specificity, and structural 'pre-ordering' of the binding site, which attempts to reduce entropic penalties) actually impair ligand-binding function. We believe that completion of these aims will provide both an immediate impact (by improving protein design methods) and a longer-term impact (by further elucidating rules that govern the behavior of ligand binding proteins in general).
 描述(由申请人提供):分子生物学中的一个重要问题是我们无法准确计算、建模和预测蛋白质-配体结合亲和力,即使提供了实际复合物的高分辨率结构,这个问题在广泛的领域中都很明显。大量实验和文献,包括(1)用于计算结构结合亲和力的算法性能不佳,(2)对于经过充分研究的蛋白质(例如链霉亲和素)的高亲和力配体结合的物理基础存在分歧, (3) 与工程新型配体结合蛋白相关的困难,试图通过解剖自然进化的配体结合蛋白来了解紧密、特异性配体结合的基础,虽然信息丰富,但尚未产生准确预测结构结合亲和力的能力,或直接计算新型配体结合蛋白的结构作为检查配体结合机制的替代系统提供了可能的优势,虽然用于创建它们的能量和结构参数可能不准确,但这些术语仍然是精确定义的。在工程过程中,可以系统地此外,在迭代设计项目中,蛋白质工程允许研究人员针对许多精确定义的配体创建大量设计的蛋白质,然后识别最有趣和信息丰富的结构。 该项目的具体目标是:(1) 确定成功设计的配体结合蛋白的共同结构和机制特征,并将这些结果与显示出意想不到的配体结合亲和力和特异性的设计进行比较2。 )为了评估配体结合蛋白设计的限制是否符合预期,本研究将检查配体蛋白设计的两个基本组成部分(形状互补性,试图增强特异性,以及结构“预-”。的排序”结合位点(试图减少熵惩罚)实际上会损害配体结合功能,我们相信,这些目标的完成将提供直接影响(通过改进蛋白质设计方法)和长期影响(通过进一步阐明控制规则)。配体结合蛋白的一般行为)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(3)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

BARRY L. STODDARD其他文献

BARRY L. STODDARD的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('BARRY L. STODDARD', 18)}}的其他基金

Biophysical and structural studies of protein and enzyme mechanism, evolution, and engineering
蛋白质和酶机制、进化和工程的生物物理和结构研究
  • 批准号:
    10550521
  • 财政年份:
    2023
  • 资助金额:
    $ 34.76万
  • 项目类别:
Combined computational and structural studies to create novel macromolecular recognition properties
结合计算和结构研究来创造新的大分子识别特性
  • 批准号:
    10543489
  • 财政年份:
    2021
  • 资助金额:
    $ 34.76万
  • 项目类别:
Combined computational and structural studies to create novel macromolecular recognition properties
结合计算和结构研究来创造新的大分子识别特性
  • 批准号:
    10643001
  • 财政年份:
    2021
  • 资助金额:
    $ 34.76万
  • 项目类别:
Combined computational and structural studies to create novel macromolecular recognition properties
结合计算和结构研究来创造新的大分子识别特性
  • 批准号:
    10372918
  • 财政年份:
    2021
  • 资助金额:
    $ 34.76万
  • 项目类别:
MegaTALS: hyperspecific reagents for targeted gene modification and correction
MegaTALS:用于靶向基因修饰和校正的超特异性试剂
  • 批准号:
    10080736
  • 财政年份:
    2014
  • 资助金额:
    $ 34.76万
  • 项目类别:
MegaTALS: hyperspecific reagents for targeted gene modification and correction
MegaTALS:用于靶向基因修饰和校正的超特异性试剂
  • 批准号:
    8629497
  • 财政年份:
    2014
  • 资助金额:
    $ 34.76万
  • 项目类别:
MegaTALS: hyperspecific reagents for targeted gene modification and correction
MegaTALS:用于靶向基因修饰和校正的超特异性试剂
  • 批准号:
    10312783
  • 财政年份:
    2014
  • 资助金额:
    $ 34.76万
  • 项目类别:
MegaTALS: hyperspecific reagents for targeted gene modification and correction
MegaTALS:用于靶向基因修饰和校正的超特异性试剂
  • 批准号:
    10615422
  • 财政年份:
    2014
  • 资助金额:
    $ 34.76万
  • 项目类别:
Structural and Biophysical Characterization of Engineered Homing Endonucleases (C
工程化归巢核酸内切酶 (C) 的结构和生物物理表征
  • 批准号:
    7466691
  • 财政年份:
    2007
  • 资助金额:
    $ 34.76万
  • 项目类别:
Structural and Biophysical Characterization of Engineered Homing Endonucleases (C
工程化归巢核酸内切酶 (C) 的结构和生物物理表征
  • 批准号:
    7500689
  • 财政年份:
    2007
  • 资助金额:
    $ 34.76万
  • 项目类别:

相似国自然基金

抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
  • 批准号:
    32370941
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
  • 批准号:
    62302277
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
  • 批准号:
    82304698
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
  • 批准号:
    32360190
  • 批准年份:
    2023
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目
DNA四面体限域辅助的高亲和力铅笔芯微电极用于早期癌症精准诊断研究
  • 批准号:
    22304062
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
  • 批准号:
    10597840
  • 财政年份:
    2023
  • 资助金额:
    $ 34.76万
  • 项目类别:
Small Molecule Therapeutics for Sickle Cell Anemia
镰状细胞性贫血的小分子疗法
  • 批准号:
    10601679
  • 财政年份:
    2023
  • 资助金额:
    $ 34.76万
  • 项目类别:
Predicting adverse drug reactions via networks of drug binding pocket similarity
通过药物结合袋相似性网络预测药物不良反应
  • 批准号:
    10750556
  • 财政年份:
    2023
  • 资助金额:
    $ 34.76万
  • 项目类别:
EnzyDock-based Multistate and Multiscale Tools for Covalent Drug Design
基于 EnzyDock 的多状态和多尺度共价药物设计工具
  • 批准号:
    10575904
  • 财政年份:
    2023
  • 资助金额:
    $ 34.76万
  • 项目类别:
De novo design of a generalizable protein biosensor platform for point-of-care testing
用于即时测试的通用蛋白质生物传感器平台的从头设计
  • 批准号:
    10836196
  • 财政年份:
    2023
  • 资助金额:
    $ 34.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了