Mechanogenomics of the asthmatic airway epithelium
哮喘气道上皮的机械基因组学
基本信息
- 批准号:10642317
- 负责人:
- 金额:$ 18.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAsthmaAwardBasal CellBindingBiologicalBiomechanicsBiometryBiophysicsBronchial SpasmBronchoconstrictionCell CommunicationCellsChronicClinicalClinical DataCoagulation ProcessCollagenComplexComputational BiologyConfusionDataDepositionDevelopmentDiseaseEnvironmentEpithelial CellsEpitheliumEventExtracellular MatrixFutureGeneticGenetic TranscriptionGenomicsGoalsGoblet CellsGrantHeterogeneityHumanImmune responseIn VitroInflammationInflammatoryLinkMechanical StressMechanicsMediatingMedicineMentorsModelingModernizationMolecularMorphologyMuscle ContractionNaturePathogenesisPathogenicityPathologicPathologic ProcessesPathway interactionsPatientsPatternPhenotypePhysicsPopulation StudyPositioning AttributeProcessProliferatingProteinsPulmonologyQualifyingResearchResearch PersonnelResourcesRoleRouteScienceScientistSignal PathwayStimulusSystems BiologyTestingTherapeuticTissuesTrainingairway epitheliumairway goblet cell hyperplasiaairway inflammationairway remodelingasthmaticasthmatic airwaybronchial epitheliumcandidate identificationcareercell typeepithelial to mesenchymal transitionexperienceexperimental studygenome-widein vivoinnovationmechanical forcemechanotransductionmigrationmolecular targeted therapiesnetwork modelsnovelpressurepreventprogramsrepairedrespiratory smooth muscleresponsesingle-cell RNA sequencingskillstargeted treatmenttherapeutic biomarkertherapeutic candidatetherapeutic targettraittranscriptome sequencingtranslational impactvolunteerwound healing
项目摘要
Summary/Abstract
Airway wall remodeling is one of the most documented hallmarks of asthma. Despite being a key clinical trait of
long-term asthma, this pathological condition remains largely uncontrolled even with front-line therapies.
Remodeling processes have been traditionally described as an aberrant response to chronic inflammation.
However, this picture is challenged by increasing evidence of airway remodeling as a primary
mechanotransduction event. Recent studies point to mechanical abnormalities in the airway epithelium as a core
factor of asthma pathogenesis. In vitro and in vivo experiments show that the mechanical effects of asthmatic
bronchoconstriction can trigger alone genomic, molecular, and morphological patterns of airway remodeling even
in the absence of inflammatory stimuli. As such, the traditional picture of asthma as a predominantly inflammatory
disease is giving way to a complex, multifactorial scenario where mechanical forces, immune response, and
tissue remodeling all contribute to the development of the disease. Building upon these findings, this proposal
hypothesizes that the mechanogenetic response of the airway epithelium to excessive mechanical stress
constitutes a route to aberrant airway remodeling that is independent of inflammation. To test this
hypothesis, Dr. De Marzio will develop a novel systems biology approach that combines genomics, biostatistics,
and network medicine. RNA-Sequencing and clinical data from asthma population studies will be integrated with
protein interaction networks to: 1) Identify the mechanogenetic signature of bronchoconstriction in the asthmatic
epithelium and understand its role on asthmatic phenotypes; 2) define the role of airway epithelial cell
heterogeneity in response to mechanical compression; and 3) determine the signaling pathways mediating
compression-induced airway remodeling to discover candidate therapeutic markers. In doing so, this project will
represent the first comprehensive study on the mechanogenomics of asthma. The intrinsic interdisciplinary
nature of this proposal makes Dr. De Marzio uniquely qualified to pursue this research direction. The proposed
research will leverage her physics background and her experience in computational biology and network
modeling to understand the pathogenic role of mechanical forces in asthma. For the successful development of
this project, she will receive additional training in airway pathobiology and pulmonary medicine and she will be
supported by an outstanding mentoring team composed of biologists, network scientists, and pulmonologists.
Dr. De Marzio's long-term career goal is to establish an independent research program at the intersection of
genomics, biomechanics, and network science. The resources offered by this award combined with the rich
intellectual environment of the Channing Division of Network Medicine will put her in an advantageous position
to transition to independence and submit multiple R01s. Dr. De Marzio's findings will pave the way for the future
development of a mechanomedicine of asthma.
摘要/摘要
气道壁重塑是哮喘最有记录的标志之一。尽管这是一个关键的临床特征
对于长期哮喘,即使采用一线治疗,这种病理状况在很大程度上仍无法得到控制。
传统上,重塑过程被描述为对慢性炎症的异常反应。
然而,越来越多的证据表明气道重塑是主要的治疗手段,这一观点受到了挑战。
力传导事件。最近的研究指出气道上皮的机械异常是核心
哮喘发病机制的因素。体外和体内实验表明,哮喘的机械效应
支气管收缩可以单独触发气道重塑的基因组、分子和形态学模式,甚至
在没有炎症刺激的情况下。因此,传统上认为哮喘是一种以炎症为主的疾病
疾病正在让位于复杂的、多因素的情况,其中机械力、免疫反应和
组织重塑都有助于疾病的发展。基于这些发现,本提案
假设气道上皮对过度机械应力的机械发生反应
构成了与炎症无关的异常气道重塑的途径。为了测试这个
假设,De Marzio 博士将开发一种新颖的系统生物学方法,结合基因组学、生物统计学、
和网络医学。 RNA 测序和哮喘人群研究的临床数据将与
蛋白质相互作用网络:1) 识别哮喘患者支气管收缩的机械遗传学特征
上皮并了解其对哮喘表型的作用; 2)定义气道上皮细胞的作用
机械压缩响应的不均匀性; 3)确定介导的信号通路
压迫诱导的气道重塑以发现候选治疗标记物。在此过程中,该项目将
代表了第一个关于哮喘机械基因组学的全面研究。内在的跨学科
该提案的性质使 De Marzio 博士具有独特的资格来追求这一研究方向。拟议的
研究将利用她的物理学背景以及计算生物学和网络方面的经验
建模以了解机械力在哮喘中的致病作用。为了成功开发
在这个项目中,她将接受气道病理学和肺医学方面的额外培训,并且她将
由生物学家、网络科学家和肺病学家组成的优秀指导团队提供支持。
De Marzio 博士的长期职业目标是在以下领域的交叉点建立一个独立的研究项目:
基因组学、生物力学和网络科学。该奖项提供的资源与丰富的资源相结合
查宁网络医学部的智力环境将使她处于有利的地位
过渡到独立并提交多个 R01。 De Marzio 博士的发现将为未来铺平道路
哮喘机械医学的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Margherita De Marzio其他文献
Margherita De Marzio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
VDAC1调控气道上皮细胞-ILC2细胞对话并诱导哮喘发病的机制探索及靶向干预研究
- 批准号:82300043
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PFKFB3介导的糖酵解通过诱导气道上皮细胞功能失调加重哮喘气道炎症和气道重塑的机制
- 批准号:82300041
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
睡眠剥夺通过上调BMAL1/IL-17轴促进三级淋巴结构形成加重哮喘的研究
- 批准号:82300039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于呼吸道菌群失衡介导NLRP3炎症小体激活探讨清肺涤痰治法改善哮喘气道炎症的作用机制
- 批准号:82304934
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ADRA2a调控滤泡辅助性T细胞与生发中心B细胞相互作用参与哮喘发病的机制研究
- 批准号:82370025
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Lung resident Treg suppression of Th2 resident memory T cells in allergic asthma
过敏性哮喘中肺常驻 Treg 对 Th2 常驻记忆 T 细胞的抑制
- 批准号:
10664599 - 财政年份:2023
- 资助金额:
$ 18.82万 - 项目类别:
Deciphering the roles of eosinophils and T lymphocytes in EGID
解读嗜酸性粒细胞和 T 淋巴细胞在 EGID 中的作用
- 批准号:
10663530 - 财政年份:2023
- 资助金额:
$ 18.82万 - 项目类别:
Implicit racial bias in pediatric emergency medicine: A foundational investigation of physician behaviors
儿科急诊医学中的隐性种族偏见:对医生行为的基础调查
- 批准号:
10722681 - 财政年份:2023
- 资助金额:
$ 18.82万 - 项目类别:
Childhood Allergy and the NeOnatal Environment in St Louis (CANOE-STL) and the Impact of Wheezing Illnesses on Neurocognitive Development of Preschool Children
圣路易斯儿童过敏和新生儿环境 (CANOE-STL) 以及喘息疾病对学龄前儿童神经认知发展的影响
- 批准号:
10745142 - 财政年份:2023
- 资助金额:
$ 18.82万 - 项目类别:
Evaluation of radon progeny and air pollution effects in asthma
评估氡子体和空气污染对哮喘的影响
- 批准号:
10723709 - 财政年份:2023
- 资助金额:
$ 18.82万 - 项目类别: