Brain-wide representations of behavior during aversive internal states in C. elegans
线虫厌恶的内部状态下的全脑行为表征
基本信息
- 批准号:10638999
- 负责人:
- 金额:$ 38.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:Animal ModelAnimalsArousalAtlasesBehaviorBehavioralBehavioral ParadigmBrainBrain regionCaenorhabditis elegansCalciumCellsComplexComputer ModelsCuesDataData SetEatingEnvironmentGenerationsGeneticGoalsHourImageInfectionModalityModelingMoodsMotivationMotorMotor outputNematodaNervous SystemNeuromodulatorNeuronsOutputPathway interactionsPopulationProcessRoleSensorySignal TransductionStereotypingStimulusStructureSystemTimeWorkbehavior influenceflexibilityimaging approachinsightneuralneural circuitneural correlateneural modelneuromechanismneuroregulationpathogenpathogenic bacteriaprogramstoolvirtual
项目摘要
As animals navigate their environments, their nervous systems transition between a wide range of
internal states that influence how sensory information is processed and how behaviors are generated. These
states of arousal, motivation, and mood typically persist for long durations of time, from minutes to hours, and
exert widespread effects across multiple sensory modalities and motor systems. Although most animals organize
their behavioral outputs in this state-like fashion, the neural mechanisms that underlie the generation of these
states are poorly understood. One prevailing hypothesis to explain how internal states are generated
suggests that fast timescale neural dynamics, which underlie moment-by-moment behavioral changes, might
be controlled over slower timescales by ascending pathways, most notably the neuromodulatory systems.
Indeed, small, defined subsets of neuromodulator-producing neurons can elicit internal state transitions in
many animals. Moreover, recent population-level recordings of neural activity have revealed that internal
states are accompanied by widespread, distributed changes in activity across many brain regions.
Remarkably, recent work has also shown that granular, moment-by-moment motor actions are reflected in
neural activity across many brain regions. This gives rise to a view that sensory signals, granular behavioral
signals, and internal state signals all co-occur in most brain circuits. However, how population-level activity
encodes a diverse set of behavioral parameters and how this encoding is influenced by internal states to
give rise to state-dependent behavioral changes is unknown. Here, we propose to tackle this problem in the
nematode C. elegans, whose crystalline nervous system, well-defined set of motor programs, and genetic
tractability should make it possible to build complete models of how neural activity encodes behavior across
distinct states. This proposal builds off new preliminary data. First, we developed a new recording platform
that enables brain-wide calcium imaging of freely-moving C. elegans with simultaneous quantification of the
diverse motor programs of the animal. We also built computational models that relate neural activity to
behavior with a high degree of precision. Surprisingly, this reveals that many C. elegans neurons encode
multiple ongoing motor programs and these encodings flexibly change over time. Moreover, we have
developed two behavioral paradigms in which we can elicit robust, stereotyped aversive internal states that
unfold over either minutes-long (Aim 1) or hours-long (Aim 2) timescales. We now propose to decipher how
each neuron across the C. elegans brain encodes precise behavioral features, creating an atlas of how
behaviors are encoded across the nervous system. We will then determine how minutes- or hours-long
internal states modulate neural activity across the brain. The comprehensive datasets that we will generate,
along with the computational models that we will build, will give rise to a clear understanding of internal state
structure in this animal and reveal basic principles that should guide future research in many animal models.
当动物在其环境中航行时,它们的神经系统在多种
影响感觉信息如何处理以及行为如何生成的内部状态。这些
唤醒、动机和情绪的状态通常会持续很长时间,从几分钟到几小时,并且
对多种感觉方式和运动系统产生广泛的影响。尽管大多数动物都有组织
他们以这种类似状态的方式进行行为输出,这些神经机制是产生这些行为的基础
人们对国家知之甚少。解释内部状态如何产生的一种流行假设
表明快速时间尺度的神经动力学,它是每时每刻的行为变化的基础,可能会
通过上行通路(尤其是神经调节系统)在较慢的时间尺度上进行控制。
事实上,产生神经调节剂的神经元的小而明确的子集可以引发内部状态转换
许多动物。此外,最近的人口水平神经活动记录表明,内部
状态伴随着许多大脑区域的广泛、分布式的活动变化。
值得注意的是,最近的研究还表明,细粒度的、每时每刻的运动动作都反映在
许多大脑区域的神经活动。这引发了一种观点,即感觉信号、细粒度行为
信号和内部状态信号在大多数大脑回路中同时出现。然而,人口水平的活动如何
对一组不同的行为参数进行编码,以及这种编码如何受到内部状态的影响
引起依赖于状态的行为变化尚不清楚。在此,我们建议解决这个问题
线虫秀丽隐杆线虫,其晶体神经系统,明确的运动程序集和遗传
易处理性应该使得建立神经活动如何编码行为的完整模型成为可能
不同的状态。该提案建立在新的初步数据的基础上。首先,我们开发了一个新的录音平台
能够对自由移动的线虫进行全脑钙成像,同时对
动物的不同运动程序。我们还建立了将神经活动与
行为具有高精度。令人惊讶的是,这表明许多秀丽隐杆线虫神经元编码
多个正在进行的运动程序和这些编码会随着时间的推移而灵活地改变。此外,我们还有
开发了两种行为范式,我们可以在其中引发强烈的、刻板的厌恶的内部状态
在几分钟(目标 1)或几小时(目标 2)的时间尺度上展开。我们现在建议破译如何
秀丽隐杆线虫大脑中的每个神经元都编码精确的行为特征,从而创建了一个关于如何进行行为的地图集
行为是通过神经系统编码的。然后我们将确定持续多分钟或几小时
内部状态调节整个大脑的神经活动。我们将生成的综合数据集,
连同我们将建立的计算模型,将产生对内部状态的清晰理解
该动物的结构并揭示了指导许多动物模型未来研究的基本原理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Willem Flavell其他文献
Steven Willem Flavell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Willem Flavell', 18)}}的其他基金
Neural Mechanisms that Underlie Flexible Sensory Control of Behavioral States in C. elegans
线虫行为状态灵活感觉控制的神经机制
- 批准号:
10659880 - 财政年份:2023
- 资助金额:
$ 38.1万 - 项目类别:
Dissecting the functional organization of the serotonergic system in C. elegans
剖析线虫血清素系统的功能组织
- 批准号:
10554333 - 财政年份:2020
- 资助金额:
$ 38.1万 - 项目类别:
Dissecting the functional organization of the serotonergic system in C. elegans
剖析线虫血清素系统的功能组织
- 批准号:
10542483 - 财政年份:2020
- 资助金额:
$ 38.1万 - 项目类别:
Dissecting the functional organization of the serotonergic system in C. elegans
剖析线虫血清素系统的功能组织
- 批准号:
10334517 - 财政年份:2020
- 资助金额:
$ 38.1万 - 项目类别:
Dissecting the functional organization of the serotonergic system in C. elegans
剖析线虫血清素系统的功能组织
- 批准号:
10725038 - 财政年份:2020
- 资助金额:
$ 38.1万 - 项目类别:
Neuromodulatory control of collective circuit dynamics in C. elegans
线虫集体回路动力学的神经调节控制
- 批准号:
10207798 - 财政年份:2017
- 资助金额:
$ 38.1万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
Fosl2调控染色质开放性在哺乳动物卵丘-卵母细胞复合物成熟过程中的机制研究
- 批准号:82301863
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
H5亚型禽流感病毒PA蛋白诱导降解JAK1增强病毒对哺乳动物致病性的作用及机制研究
- 批准号:32373042
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
动物双歧杆菌对不同聚合度低聚木糖同化差异性的分子机制研究
- 批准号:32302789
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
基于扁颅蝠类群系统解析哺乳动物脑容量适应性减小的演化机制
- 批准号:32330014
- 批准年份:2023
- 资助金额:215 万元
- 项目类别:重点项目
相似海外基金
Reprogramming organismal lifespan through modulation of neuropeptides
通过调节神经肽重新编程有机体寿命
- 批准号:
10507323 - 财政年份:2023
- 资助金额:
$ 38.1万 - 项目类别:
Contextual modulation of visual decision-making across the visual hierarchy
跨视觉层次结构的视觉决策的上下文调制
- 批准号:
10658176 - 财政年份:2023
- 资助金额:
$ 38.1万 - 项目类别:
The Dynamic Neuromodulome in Alzheimer's Disease and Aging
阿尔茨海默病和衰老中的动态神经模块
- 批准号:
10901011 - 财政年份:2023
- 资助金额:
$ 38.1万 - 项目类别:
Non-sensory Circuits for Auditory Perceptual Learning
用于听觉感知学习的非感觉回路
- 批准号:
10563542 - 财政年份:2023
- 资助金额:
$ 38.1万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 38.1万 - 项目类别: