Cyclophilin D Regulates Neonatal Cardiac Bioenergetics and Function
亲环蛋白 D 调节新生儿心脏生物能和功能
基本信息
- 批准号:10242768
- 负责人:
- 金额:$ 50.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcetylationAffectBioenergeticsBiological AssayBiologyBiometryBirthBlood PressureCardiacCardiac MyocytesCardiac developmentCardiomyopathiesChaperone Protein InhibitionCongenital Heart DefectsCouplingDataDevelopmentDiseaseElectron TransportEmbryoEnvironmentEquilibriumExposure toFutureGoalsHealthHeartHumanHypoxiaIn VitroInner mitochondrial membraneLifeLung diseasesMeasuresMetabolismMitochondriaModelingMolecular ChaperonesMuscle CellsNeonatalOrganellesOutputOxygenPathologyPathway interactionsPermeabilityPharmacologyPhysiologicalPhysiologyPlayProcessProductionProliferatingProteinsPublishingReactive Oxygen SpeciesReportingRoleSpecimenStructureSystemTechniquesTestingbaseclinically relevantcongenital heart disordercyclophilin Dexperimental studyfallsfatty acid oxidationgenetic approachheart functionhypoxia neonatorumin vivoinfection riskneonatal exposureneonatal miceneonatenovelprematurepulmonary functiontargeted treatmentuptake
项目摘要
Birth is the most abrupt transition during life, and the neonatal heart must accommodate to this dramatic
change in environment by increasing its output to the body. Exposure to higher levels of oxygen at birth likely
activates intracellular pathways that allow cardiac myocytes to rapidly proliferate and then differentiate to
cause the final maturation of cardiac structure and function that is required for this increased output and
survival. However, major gaps in our understanding of this process remain.
It is apparent that mitochondria play an important role in this process. We have found that mitochondria
regulate cardiac development in the embryo and neonate and that the mitochondrial chaperone protein,
cyclophilin D (CyPD), regulates changes in mitochondrial function and reactive oxygen species (ROS)
production that control cardiomyocyte proliferation and differentiation. Our preliminary data have begun to
define changes in this CyPD-mitochondrial-ROS-differentiation pathway that occur in the neonatal heart. In
addition, these data provide novel models to dissect the mechanisms of this pathway.
These findings suggest the hypothesis that increased O2 at birth initiates a rise and then fall in CyPD
activity, which regulates mitochondrial function, particularly ROS production, to control neonatal myocyte
proliferation and differentiation and cardiac function. The scientific premise of this proposal is supported by
data discussed above, but the mechanisms involved have not been fully elucidated. Our overall goal is to use
our expertise in cardiac development and mitochondrial biology to dissect the mechanisms that control this
important physiologic pathway in the neonatal heart and determine if CyPD inhibition can be used to
ameliorate pathology in clinically relevant models. To achieve these goals, we propose 3 Specific Aims: 1.
Determine how CyPD controls the neonatal cardiac mitochondrial-ROS-differentiation pathway. 2. Determine
effects of disrupting CyPD activity in the neonatal heart. 3. Determine effects of hypoxia on the neonatal CyPD-
mitochondria-ROS-differentiation pathway.
The proposed experiments use a novel set of pharmacologic and genetic approaches that manipulate
oxygen, CyPD, inner mitochondrial membrane coupling, and ROS in the neonatal heart. Specimens will be
processed using a battery of assays to measure CyPD expression, acetylation, and activity; mitochondrial
structure and function, ETC activity and assembly, ROS production; myocyte proliferation and differentiation;
and cardiac function. Our team has unique expertise in cardiac, developmental, and mitochondrial biology and
in biostatistics and we employ novel concepts and cutting-edge techniques to study mitochondria during late
cardiac development. The anticipated results will significantly change our understanding of bioenergetics in the
neonatal heart and will lead to future studies that use mitochondrial targeted therapies to enhance cardiac
function and cardiac myocyte differentiation in a variety of disease states in the neonatal and mature heart.
出生是一生中最突然的转变,新生儿的心脏必须适应这种戏剧性的变化
通过增加对身体的输出来改变环境。出生时可能接触较高水平的氧气
激活细胞内通路,使心肌细胞快速增殖,然后分化为
导致输出量增加所需的心脏结构和功能最终成熟
生存。然而,我们对这一过程的理解仍然存在重大差距。
显然,线粒体在此过程中发挥着重要作用。我们发现线粒体
调节胚胎和新生儿的心脏发育,线粒体伴侣蛋白,
亲环蛋白 D (CyPD),调节线粒体功能和活性氧 (ROS) 的变化
产生控制心肌细胞增殖和分化的物质。我们的初步数据已经开始
定义新生儿心脏中发生的 CyPD-线粒体-ROS 分化途径的变化。在
此外,这些数据提供了新的模型来剖析该途径的机制。
这些发现表明出生时氧气含量增加会导致 CyPD 升高然后下降的假设
活性,调节线粒体功能,特别是 ROS 产生,以控制新生儿肌细胞
增殖和分化与心脏功能。该提案的科学前提得到以下支持:
上面讨论了数据,但所涉及的机制尚未完全阐明。我们的总体目标是使用
我们在心脏发育和线粒体生物学方面的专业知识来剖析控制这一过程的机制
新生儿心脏中重要的生理通路,并确定 CyPD 抑制是否可用于
改善临床相关模型的病理学。为了实现这些目标,我们提出 3 个具体目标: 1.
确定 CyPD 如何控制新生儿心脏线粒体 ROS 分化途径。 2. 确定
破坏新生儿心脏中 CyPD 活性的影响。 3. 确定缺氧对新生儿 CyPD-的影响
线粒体-ROS-分化途径。
拟议的实验使用了一套新颖的药理学和遗传学方法来操纵
新生儿心脏中的氧气、CyPD、线粒体内膜偶联和 ROS。标本将是
使用一系列测定法进行处理以测量 CyPD 表达、乙酰化和活性;线粒体
结构和功能、ETC活性和组装、ROS产生;心肌细胞增殖和分化;
和心脏功能。我们的团队在心脏、发育和线粒体生物学方面拥有独特的专业知识,
在生物统计学中,我们采用新颖的概念和尖端技术来研究线粒体
心脏发育。预期的结果将显着改变我们对生物能学的理解
新生儿心脏,并将导致未来使用线粒体靶向治疗来增强心脏功能的研究
新生儿和成熟心脏在各种疾病状态下的功能和心肌细胞分化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George A Porter其他文献
Association of genetic and sulcal traits with executive function in congenital heart disease
先天性心脏病遗传和脑沟特征与执行功能的关联
- DOI:
10.1002/acn3.51950 - 发表时间:
2023-11-27 - 期刊:
- 影响因子:5.3
- 作者:
Lara Maleyeff;Jane W. Newburger;D. Wypij;Nina H Thomas;Evdokia Anagnoustou;Martina Brueckner;Wendy K. Chung;John Cleveland;Sean Cunningham;Bruce D. Gelb;E. Goldmuntz;Donald J. Hagler;Hao Huang;Eileen King;Patrick McQuillen;Thomas A Miller;Ami Norris;George A Porter;Amy E Roberts;P. E. Grant;Kiho Im;S. Morton - 通讯作者:
S. Morton
De Novo Damaging Variants, Clinical Phenotypes, and Post-Operative Outcomes in Congenital Heart Disease
先天性心脏病的从头破坏性变异、临床表型和术后结果
- DOI:
10.1161/circgen.119.002836 - 发表时间:
2020-05-26 - 期刊:
- 影响因子:0
- 作者:
M. Boskovski;Jason Homsy;M. Nathan;Lynn A. Sleeper;S. Morton;K. B. Manheimer;Angela C. Tai;Joshua M. Gorham;Matthew J. Lewis;Michael F Swartz;George M. Alfieris;Emile A. Bacha;M. Karimi;David Meyer;Khanh Nguyen;D. Bernstein;Angela Romano;George A Porter;E. Goldmuntz;Wendy Chung;D. Srivastava;J. Kaltman;M. Tristani;R. Lifton;Amy E Roberts;J. Gaynor;Bruce D. Gelb;R. Kim;J. G. Seidman;M. Brueckner;John E. Mayer;Jane W. Newburger;Christine E Seidman - 通讯作者:
Christine E Seidman
Mitochondria-tau association promotes cognitive decline and hippocampal bioenergetic deficits during the aging.
线粒体-tau 蛋白关联会促进衰老过程中认知能力下降和海马生物能量缺陷。
- DOI:
10.1016/j.freeradbiomed.2024.03.017 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:7.4
- 作者:
Margrethe A. Olesen;Eugenia Pradenas;Francisca Villavicencio;George A Porter;Gail V.W. Johnson;Rodrigo A. Quintanilla - 通讯作者:
Rodrigo A. Quintanilla
Caspase-3 cleaved tau impairs mitochondrial function through the opening of the mitochondrial permeability transition pore.
Caspase-3 切割的 tau 蛋白通过打开线粒体通透性转换孔来损害线粒体功能。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
María José Pérez;Rodrigo Ibarra;Maoping Tang;George A Porter;Gail V W Johnson;R. Quintanilla - 通讯作者:
R. Quintanilla
George A Porter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George A Porter', 18)}}的其他基金
Cyclophilin D Regulates Neonatal Cardiac Bioenergetics and Function
亲环蛋白 D 调节新生儿心脏生物能和功能
- 批准号:
9815629 - 财政年份:2019
- 资助金额:
$ 50.55万 - 项目类别:
Cyclophilin D Regulates Neonatal Cardiac Bioenergetics and Function
亲环蛋白 D 调节新生儿心脏生物能和功能
- 批准号:
10472065 - 财政年份:2019
- 资助金额:
$ 50.55万 - 项目类别:
Cyclophilin D Regulates Neonatal Cardiac Bioenergetics and Function
亲环蛋白 D 调节新生儿心脏生物能和功能
- 批准号:
9975891 - 财政年份:2019
- 资助金额:
$ 50.55万 - 项目类别:
Calcium-mediated modulation of cardiac development
钙介导的心脏发育调节
- 批准号:
6898270 - 财政年份:2002
- 资助金额:
$ 50.55万 - 项目类别:
Calcium-mediated modulation of cardiac development
钙介导的心脏发育调节
- 批准号:
6756517 - 财政年份:2002
- 资助金额:
$ 50.55万 - 项目类别:
Calcium-mediated modulation of cardiac development
钙介导的心脏发育调节
- 批准号:
6514036 - 财政年份:2002
- 资助金额:
$ 50.55万 - 项目类别:
Calcium-mediated modulation of cardiac development
钙介导的心脏发育调节
- 批准号:
6609725 - 财政年份:2002
- 资助金额:
$ 50.55万 - 项目类别:
Calcium-mediated modulation of cardiac development
钙介导的心脏发育调节
- 批准号:
7074043 - 财政年份:2002
- 资助金额:
$ 50.55万 - 项目类别:
相似国自然基金
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高尿酸调控TXNIP驱动糖代谢重编程影响巨噬细胞功能
- 批准号:82370895
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
倒装芯片超声键合微界面结构演变机理与影响规律
- 批准号:52305599
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
寒地城市学区建成环境对学龄儿童心理健康的影响机制与规划干预路径研究
- 批准号:52378051
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
原位研究聚变燃料纯化用Pd-Ag合金中Ag对辐照缺陷演化行为的影响及其相互作用机制
- 批准号:12305308
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Acetyl CoA Carboxylase in the Metabolic Control of Inflammation
乙酰辅酶A羧化酶在炎症代谢控制中的作用
- 批准号:
10660439 - 财政年份:2023
- 资助金额:
$ 50.55万 - 项目类别:
Oxidative Stress and Mitochondrial Dysfunction in Chemogenetic Heart Failure
化学遗传性心力衰竭中的氧化应激和线粒体功能障碍
- 批准号:
10643012 - 财政年份:2023
- 资助金额:
$ 50.55万 - 项目类别:
Type 2 diabetes risk variant effects on mitochondrial (patho)physiology
2 型糖尿病风险变异对线粒体(病理)生理学的影响
- 批准号:
10717519 - 财政年份:2023
- 资助金额:
$ 50.55万 - 项目类别:
Acylations: a novel pathway in the response to mitochondrial energy dysfunction
酰化:应对线粒体能量功能障碍的新途径
- 批准号:
10543478 - 财政年份:2022
- 资助金额:
$ 50.55万 - 项目类别:
Mechanisms and functions of fatty acid oxidation in T cell differentiation
T细胞分化中脂肪酸氧化的机制和功能
- 批准号:
10540296 - 财政年份:2022
- 资助金额:
$ 50.55万 - 项目类别: