Ultrasound Enhanced Extracorporeal Membrane Oxygenation
超声增强体外膜氧合
基本信息
- 批准号:10323520
- 负责人:
- 金额:$ 29.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAdultAdvanced DevelopmentAnimalsAnticoagulantsAnticoagulationAreaAutomobile DrivingBiocompatible MaterialsBloodBlood PlateletsBlood coagulationBlood gasCapitalChildhoodClinicalCoagulation ProcessConsumptionCustomDeep Vein ThrombosisDepositionDevelopmentDevicesDiffusionDiseaseEntrepreneurshipExtracorporeal Membrane OxygenationFiberFrequenciesFundingGasesGenerationsGeometryGuidelinesHeatingHemolysisHemorrhageHeparinIncidenceInjuryInternationalIntracranial HemorrhagesLungMedicalMembraneMeniscus structure of jointNanoporousOxygenOxygenatorsPF4 GenePatient-Focused OutcomesPatientsPhasePhysiologic pulsePolypropylenesPositioning AttributeProcessProteinsPulmonary EmbolismQuality of lifeRecording of previous eventsRegistriesReportingRiskSafetyScienceSonicationStreamSurfaceSystemTherapeuticThickThrombosisTransducersTravelUltrasonographyVenous ThrombosisWorkabsorptionblood damageclinically relevantdesignheart functionimprovedmortalityneonatenoveloxygen transportpulmonary functionsafety outcomessuccessventricular assist device
项目摘要
PROJECT SUMMARY
Approximately 16,000 patients received artificial pulmonary support via extra-corporeal membrane oxygenation
(ECMO) in 2019. During ECMO, hollow fiber membrane (HFM) gas exchangers require a surface area of ~2
m2 to achieve therapeutic gas transfer; however, this large contact area with the blood activates the
coagulation cascade that requires systemic anticoagulation for suppression, usually with heparin. Although
heparin reduces the frequency of clotting, it does not effectively inhibit the surface deposition of platelets and
proteins. The consumption of these critical clotting components, as well as continuous administration of
systemic anticoagulant, results in an increased risk of bleeding during ECMO and increases the risk of
complications and mortality.
We propose that reducing the surface area of the HFM gas exchanger will lead to less clotting and require less
anticoagulant use, reducing the incidence of both thrombosis and hemorrhage. To achieve this, Boundless
Science is developing a novel blood oxygenation system that uses ultrasound to dramatically enhance gas
transfer efficiency, and thereby reduce the required gas exchanger area. A smaller gas exchanger will induce
less clotting and require less anticoagulation and associated bleeding risks. An additional benefit is that a
smaller surface area will allow us to develop a dramatically smaller ECMO system, offering the potential for
ambulatory ECMO. Our initial results with ultrasound-enhanced ECMO (US-ECMO) show that ultrasound (US)
enhances the rate of oxygen transport across a planar nano-porous polypropylene membrane by 4–6.4-fold.
We hypothesize that US enhances transport through two mechanisms. First, the absorption of US travelling
through the blood induces a bulk force, which in turn generates flow known as bulk streaming. Second, US
oscillates gas/blood menisci at the membrane surface, rapidly mixing the blood near the membrane in a
process known as microstreaming. Blood mixing from these mechanisms disrupts the boundary layer at the
blood-membrane interface, steepening the oxygen gradient and driving faster diffusion.
This proposal seeks to identify the US and membrane configurations that maximize gas exchange within
clinically relevant HFM. We will constrain US parameters to avoid blood damage. We will progress toward this
objective through the following specific aims. Aim 1) Determine the specific ultrasound parameters (amplitude,
frequency, duty cycle, pulse duration, and transducer geometry) that separately optimize bulk streaming and
microstreaming, while avoiding hemolysis, inertial cavitation, excessive heating, and bubble generation. Aim 2)
Determine the maximal fiber bundle thickness over which acoustic streaming and microstreaming are effective.
Aim 3) Fabricate and evaluate a custom ultrasound delivery system that safely enhances oxygen transport by
at least seven-fold. Successful results will not only show the potential of US-ECMO but will provide the
necessary design guidelines to drive the development of a clinically viable US-ECMO system.
项目概要
大约 16,000 名患者通过体外膜氧合接受了人工肺支持
(ECMO)2019年。在ECMO期间,中空纤维膜(HFM)气体交换器需要〜2的表面积
m2 来实现治疗气体转移;然而,与血液的大接触面积会激活
需要全身抗凝来抑制的凝血级联反应,通常使用肝素。
肝素会降低凝血频率,不能有效抑制血小板表面沉积,
这些关键凝血成分的消耗以及持续施用。
全身抗凝,导致 ECMO 期间出血风险增加,并增加
并发症和死亡率。
我们建议减少 HFM 气体交换器的表面积将导致更少的凝结并且需要更少的
抗凝剂的使用,减少血栓和出血的发生率 为了实现这一目标,Boundless。
科学正在开发一种新型血氧系统,利用超声波显着增强气体
传输效率,从而减少所需的气体交换器面积,从而导致较小的气体交换器。
凝血较少,需要较少的抗凝治疗和相关的出血风险。
更小的表面积将使我们能够开发出更小的 ECMO 系统,从而为
我们对超声增强型 ECMO (US-ECMO) 的初步结果表明,超声 (US)
使氧气穿过平面纳米多孔聚丙烯膜的传输速率提高 4-6.4 倍。
我们看到美国通过两个机制来加强交通:一是吸纳美国游客。
通过血液会产生体积力,进而产生称为体积流的流动。
在膜表面振荡气体/血液半月板,快速混合膜附近的血液
这些机制的血液混合过程被称为微流,破坏了边界层。
血膜界面,使氧梯度陡峭并驱动更快的扩散。
该提案旨在确定可最大化内部气体交换的美国和膜配置
临床相关的 HFM 我们将限制 US 参数以避免血液损伤。
目标 1) 确定具体的超声参数(振幅、
频率、占空比、脉冲持续时间和传感器几何形状),分别优化批量流和
微流,同时避免溶血、惯性空化、过度加热和气泡产生。目标 2)
确定声流和微流有效的最大纤维束厚度。
目标 3) 制造并评估定制的超声输送系统,该系统通过以下方式安全地增强氧气输送:
至少七倍的成功结果不仅会显示 US-ECMO 的潜力,而且会提供
必要的设计指南来推动临床上可行的 US-ECMO 系统的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Jones其他文献
Andrew Jones的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Jones', 18)}}的其他基金
Extra-Corporeal Oxygenator with Minimal Blood Surface Contact
与血液表面接触最少的体外氧合器
- 批准号:
10760184 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Aerosol Ventilation for Rapid Cooling of Transplant Donor Lungs
用于快速冷却移植供体肺的气雾通气
- 批准号:
10481907 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
Aerosol Ventilation to Reduce Ventilator Induced Lung Injury
气雾通气可减少呼吸机引起的肺损伤
- 批准号:
10383334 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
相似国自然基金
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Advanced technology for neural interfaces based on microstimulation
基于微刺激的神经接口先进技术
- 批准号:
9094696 - 财政年份:2013
- 资助金额:
$ 29.99万 - 项目类别:
Advanced technology for neural interfaces based on microstimulation
基于微刺激的神经接口先进技术
- 批准号:
8573376 - 财政年份:2013
- 资助金额:
$ 29.99万 - 项目类别:
Advanced technology for neural interfaces based on microstimulation
基于微刺激的神经接口先进技术
- 批准号:
8700369 - 财政年份:2013
- 资助金额:
$ 29.99万 - 项目类别:
Integrated Interdisciplinary Training in Computational Neuroscience
计算神经科学综合跨学科培训
- 批准号:
7293610 - 财政年份:2006
- 资助金额:
$ 29.99万 - 项目类别: