Aerosol Ventilation to Reduce Ventilator Induced Lung Injury
气雾通气可减少呼吸机引起的肺损伤
基本信息
- 批准号:10383334
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-23 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:Acute Respiratory Distress SyndromeAerosolsAirAlveolarAlveolusAnti-Inflammatory AgentsAntiinflammatory EffectApoptosisAutomobile DrivingBiopsyCannulationsCarbon DioxideCarrying CapacitiesCell LineCellsClinicalCouples TherapyDevelopmentDevicesEndotheliumEndotoxinsEpithelialEpithelial CellsEquipmentExcisionExhalationExtracorporeal Membrane OxygenationFamily suidaeFluorocarbonsFunctional disorderGasesGoalsGuidelinesHemorrhageHumanImageIn VitroInflammationInflammatoryInflammatory ResponseInhalationInjuryInterventionIntubationLeadLiquid substanceLungMagnetic Resonance ImagingMeasuresMechanical VentilatorsMechanical ventilationMedicalMedical DeviceMethodsMinorMonitorMorbidity - disease rateNecrosisOxygenPartial Liquid VentilationPatient-Focused OutcomesPatientsPhaseProcessPropertyPulmonary EdemaPulmonary Gas ExchangePulmonary Vascular ResistanceRecyclingRespiratory FailureRiskSafetyScienceSmall Business Innovation Research GrantStrokeStructure of parenchyma of lungSurfaceSystemTechnologyTestingThrombosisTidal VolumeTimeTissuesTraumaVentilatorVentilator-induced lung injuryaerosolizedairway epitheliumbasebiomaterial compatibilitycostcytokinecytotoxiccytotoxicitydesignefficacy evaluationhigh riskimprovedin vivoin vivo evaluationinflammatory markerlung injurylung volumemechanical forcemortalityporcine modelpressureprototypepulmonary functionrespiratoryresponsestroke risktertiary carevaporventilation
项目摘要
PROJECT SUMMARY
Mechanical ventilation (MV) is used in an ICU setting when respiratory failure occurs for a variety of reasons,
including acute respiratory distress syndrome (ARDS). The mortality of severe ARDS approaches 50% and
even those that survive typically require MV and suffer long-term adverse impacts on their lung function. The
aggressive ventilator settings used during MC apply strong mechanical forces during ventilation that can lead
to ventilator-induced lung injury (VILI) via physical disruption of the tissues and cells and activation of cytotoxic
and inflammatory responses. Alternatives to MV, such as ECMO (extracorporeal membrane oxygenation), can
efficiently perform ventilation and oxygenation, is exorbitantly expensive, requires highly specialized teams and
equipment that is not widely available, and carries high risks of stroke, bleeding, and thrombosis.
We propose that aerosolizing liquid perfluorocarbons (LPs) with the inspired air during MV will achieve more
rapid cooling and efficient gas exchange, negating the need for high ventilator settings and thus reducing VILI.
To achieve this, Boundless Science is developing a bi-liquid aerosolized therapy (BAT) coupled to a
mechanical ventilator to yield a BAT system (BATS) to introduce a fine perfluorocarbon mist that
simultaneously cools the lungs to reduce inflammation while enhancing oxygen delivery to overcome
pulmonary dysfunction. Our preliminary results indicate that BATS successfully and rapidly cooled isolated pig
lungs to 32˚C. We hypothesize that BATS will achieve low polydispersity of median aerosol droplet to obtain
uniform pulmonary distribution and consistent efficacy while using an LP mixture that enhances CO2 exhalation
and thus improve patient outcomes. At the same time, the evaporative cooling in the epithelium will further
reduce inflammation beyond the inherent anti-inflammatory properties of the LPs, while LP recycling within a
standard ventilator will reducing costs and making it commercially viable for the first time.
The objective of this proposal is to provide proof of concept that BAT coupled with MV will increase pulmonary
oxygenation (PaO2/FiO2) by 50% without causing trauma. We will progress toward this objective using the
following Specific Aims. Aim 1) Determine the optimal mixture of LPs that has low level cytotoxicity and
provides the highest anti-inflammatory effects in vitro. Aim 2) Create the optimal droplet size and LP ratio to
effectively infiltrate and cool alveoli with aerosolized LP. Aim 3) Evaluate the optimized aerosolized LP mixture
and droplet size from Aims 1 and 2 in an in vivo porcine model of ARDS. Successful results will not only show
the potential of BATS but will importantly provide the necessary design guidelines to drive the development of
a clinically and commercially viable system.
项目概要
当因各种原因发生呼吸衰竭时,在 ICU 环境中使用机械通气 (MV),
包括急性呼吸窘迫综合征 (ARDS),严重 ARDS 的死亡率接近 50%,
即使是那些幸存下来的人通常也需要 MV 并遭受对其肺功能的长期不利影响。
MC 期间使用的激进呼吸机设置会在通气过程中施加强大的机械力,从而导致
通过组织和细胞的物理破坏以及细胞毒性的激活来预防呼吸机引起的肺损伤(VILI)
MV 的替代方案,例如 ECMO(体外膜肺氧合),可以
有效地进行通气和氧合,成本高昂,需要高度专业化的团队和
设备尚未广泛普及,并且存在中风、出血和血栓形成的高风险。
我们建议在 MV 期间用吸入的空气雾化液体全氟化碳 (LP) 将实现更多效果
快速冷却和高效气体交换,无需较高的呼吸机设置,从而减少 VILI。
为了实现这一目标,Boundless Science 正在开发一种与
机械通风机产生 BAT 系统 (BATS),引入细小的全氟化碳雾,
同时冷却肺部以减少炎症,同时增强氧气输送以克服
我们的初步结果表明 BATS 成功且快速地冷却了离体猪。
我们发现 BATS 将实现中值气溶胶液滴的低多分散性,以获得
使用增强 CO2 呼出的 LP 混合物时,肺部分布均匀,功效一致
同时,上皮的蒸发冷却将进一步改善。
减少炎症超出 LP 固有的抗炎特性,同时 LP 在
标准呼吸机将降低成本并首次使其具有商业可行性。
该提案的目的是提供概念证明,即 BAT 与 MV 结合将增加肺功能
氧合 (PaO2/FiO2) 提高 50%,且不会造成创伤 我们将利用以下方法来实现这一目标。
具体目标 1) 确定具有低水平细胞毒性和的最佳 LP 混合物。
提供最高的体外抗炎作用 目标 2) 创建最佳的液滴尺寸和 LP 比例。
用雾化LP有效渗透和冷却肺泡 目标3) 评估优化的雾化LP混合物。
以及目标 1 和 2 在 ARDS 猪体内模型中的液滴大小 成功的结果不仅会显示。
BATS 的潜力,但重要的是提供必要的设计指南来推动开发
临床和商业上可行的系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Jones其他文献
Andrew Jones的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Jones', 18)}}的其他基金
Extra-Corporeal Oxygenator with Minimal Blood Surface Contact
与血液表面接触最少的体外氧合器
- 批准号:
10760184 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Aerosol Ventilation for Rapid Cooling of Transplant Donor Lungs
用于快速冷却移植供体肺的气雾通气
- 批准号:
10481907 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Ultrasound Enhanced Extracorporeal Membrane Oxygenation
超声增强体外膜氧合
- 批准号:
10323520 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
相似国自然基金
华北地区高空气溶胶活化特性及其参数化在模式中的应用
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于高山观测研究高空气溶胶老化特征和活化特性及其对云滴谱分布的影响
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
猪舍粪源细菌气溶胶化机制及其进入空气后的衰减规律研究
- 批准号:32102602
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于云阴影的陆地上空气溶胶光学特性的卫星遥感
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
电梯轿厢运行引起病毒气溶胶跨楼层传播的空气动力学机制
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Preclinical development of a synthetic lung surfactant dry powder aerosol for hypoxemia or acute respiratory distress syndrome patients receiving different modes of ventilation support
用于接受不同通气支持模式的低氧血症或急性呼吸窘迫综合征患者的合成肺表面活性剂干粉气雾剂的临床前开发
- 批准号:
10658610 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Preclinical development of a synthetic lung surfactant dry powder aerosol for acute respiratory distress syndrome patients receiving different modes of ventilation support
用于接受不同通气支持模式的急性呼吸窘迫综合征患者的合成肺表面活性剂干粉气雾剂的临床前开发
- 批准号:
10704308 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Novel Peptide/siRNA Nanoparticles for Treatment of Acute Lung Injury
用于治疗急性肺损伤的新型肽/siRNA纳米颗粒
- 批准号:
9376455 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Intra-pulmonary aerosol delivery for intubated pediatric patients
气管插管儿童患者的肺内气雾剂输送
- 批准号:
8454639 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别: