Extra-Corporeal Oxygenator with Minimal Blood Surface Contact
与血液表面接触最少的体外氧合器
基本信息
- 批准号:10760184
- 负责人:
- 金额:$ 29.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2024-08-15
- 项目状态:已结题
- 来源:
- 关键词:AcuteAcute Respiratory Distress SyndromeAdsorptionAlveolarAnimalsAnticoagulantsAnticoagulationAreaAsthmaBloodBlood PlateletsBlood SubstitutesBlood TestsBlood coagulationBlood flowCOVID-19Carbon DioxideCharacteristicsChildhoodChronic Obstructive Pulmonary DiseaseCirculationClinicalCoagulation ProcessComplement ActivationConsumptionDepositionDevelopmentDevicesDiameterDiffuseDiseaseExcisionExtracorporeal Membrane OxygenationFamily suidaeFeedbackFiberFibrinFluorocarbonsFrequenciesGasesGeometryGoalsGuidelinesHemolysisHemorrhageHeparinHourHuman bodyIn VitroIncidenceInflammation MediatorsInjuryInterviewLiquid substanceLungLung TransplantationMarketingMedical DeviceMembraneModelingOperative Surgical ProceduresOrphanOxygenOxygenatorsPatientsPerformancePhasePhysiologicalPlatelet ActivationPneumonectomyProteinsRespiratory FailureRiskScienceSmall Business Innovation Research GrantStructureSurfaceSystemTestingTherapeuticThrombosisThrombusVenousWeightWorkbiomaterial compatibilityblood damagecommercializationdensitydesignexperiencegood laboratory practicegraft dysfunctionheart functionimproved outcomein silicoleukocyte activationlung failuremortalitynovelpressurepreventprototypepulmonary function
项目摘要
PROJECT SUMMARY
Approximately 20,317 patients globally received artificial pulmonary support via extra-corporeal membrane
oxygenation (ECMO) in 2021. During ECMO, hollow fiber membrane (HFM) gas exchangers require a surface
area of ~2 m2 to achieve therapeutic gas transfer; however, this large contact area with the blood activates the
coagulation cascade that requires systemic anticoagulation for suppression, usually with heparin. Although
heparin reduces the frequency of clotting, it does not effectively inhibit the surface deposition of platelets and
proteins. The consumption of these critical clotting components, as well as continuous administration of systemic
anticoagulant, results in an increased risk of bleeding during ECMO and increases the risk of complications and
mortality. We propose that replacing the HFM gas exchanger with a liquid perfluorocarbon blood oxygenation
system will lead to less clotting and require less anticoagulant use, reducing the incidence of both thrombosis
and hemorrhage. Liquid perfluorocarbons such as perfluorodecalin (PFD) have several characteristics to make
such a system viable: (1) They are completely immiscible with blood, allowing easy separation between the two
liquids; (2) They have ~twice the density of blood, such that blood flows up through perfluorocarbons, making a
flow system work through natural circulation; (3) They carry ~40% of their weight in oxygen and >160% of their
weight in carbon dioxide, both at STP, enabling efficient gas transfer with blood; and (4) PFD is safe in the human
body having been approved as a blood substitute in 1989. Boundless will create a device, a Perfluorocarbon
Blood Oxygenation System (PBOS) that flows oxygenated PFD into a chamber in combination with blood using
Venturi Blood Droplet generators, nozzles that create small droplets of blood with minimal shear, hemolysis, or
platelet activation. The small blood droplets gain oxygen and release carbon dioxide into the PFD quickly before
reagglomerating at the top of the PBOS. The newly oxygenated blood is returned to the body. The PFD moves
into a chamber where it is re-oxygenated and carbon dioxide is removed. This proposal seeks to identify an
optimal flow system that optimizes extracorporeal blood oxygenation (and carbon dioxide removal) while
preventing blood activation, blood damage, or adding PFD to the body. In reducing blood shear in the PBOS,
we will minimize hemolysis and blood activation. We will progress toward this objective through the following
Specific Aims: Aim 1: Optimize VDG geometry and flow rates through a combination of in-silico modeling
and prototypes. Aim 2: Quantify blood oxygenation and CO2 removal as a function of droplet sizes and
PFD flow rates. Aim 3: Demonstrate a 2 L/min system with clinically useful oxygenation, CO2 removal,
and hemolysis. Aim 4: Develop preliminary marketing and regulatory plans for the PBOS. Successful
results will not only show the potential of PBOS but will provide the necessary design guidelines to drive the
development of a clinically viable PBOS system.
项目概要
全球约 20,317 名患者通过体外膜接受人工肺支持
2021 年进行氧合 (ECMO)。在 ECMO 期间,中空纤维膜 (HFM) 气体交换器需要一个表面
约 2 m2 的面积以实现治疗气体传输;然而,这种与血液的大接触面积会激活
需要全身抗凝来抑制的凝血级联反应,通常使用肝素。虽然
肝素会降低凝血频率,不能有效抑制血小板表面沉积,
蛋白质。这些关键凝血成分的消耗以及全身性的持续给药
抗凝剂,导致 ECMO 期间出血的风险增加,并增加并发症的风险
死亡。我们建议用液体全氟化碳血氧替代HFM气体交换器
系统将导致较少的凝血并需要较少的抗凝剂使用,从而降低血栓形成的发生率
和出血。全氟萘烷 (PFD) 等液体全氟化碳具有多种特性
这样的系统可行:(1)它们与血液完全不混溶,可以轻松地将两者分离
液体; (2) 它们的密度是血液的两倍,因此血液通过全氟化碳向上流动,从而形成
流动系统通过自然循环工作; (3) 它们携带约 40% 重量的氧气和 >160% 的重量
二氧化碳重量(均在 STP 下),可实现血液中气体的有效传输; (4) PFD 对人体是安全的
1989 年,Boundless 被批准作为血液替代品。Boundless 将制造一种装置,一种全氟化碳
血液氧合系统 (PBOS) 将含氧 PFD 与血液一起流入腔室
文丘里血滴发生器、喷嘴,以最小的剪切、溶血或
血小板活化。小血滴在 PFD 中快速获得氧气并释放二氧化碳
在 PBOS 顶部重新聚集。新含氧的血液返回体内。 PFD 移动
进入一个室,在那里它被重新充氧并去除二氧化碳。该提案旨在确定一个
最佳流量系统,可优化体外血液氧合(和二氧化碳去除),同时
防止血液活化、血液损伤或向体内添加 PFD。在减少 PBOS 中的血液剪切力时,
我们将最大限度地减少溶血和血液活化。我们将通过以下几方面的努力来实现这一目标
具体目标: 目标 1:通过结合计算机建模来优化 VDG 几何结构和流量
和原型。目标 2:量化血液氧合和二氧化碳去除量与液滴大小和
PFD 流量。目标 3:演示 2 L/min 系统,具有临床上有用的氧合、CO2 去除、
和溶血。目标 4:为 PBOS 制定初步营销和监管计划。成功的
结果不仅将展示 PBOS 的潜力,还将提供必要的设计指南来推动
开发临床上可行的 PBOS 系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Jones其他文献
Andrew Jones的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Jones', 18)}}的其他基金
Aerosol Ventilation for Rapid Cooling of Transplant Donor Lungs
用于快速冷却移植供体肺的气雾通气
- 批准号:
10481907 - 财政年份:2022
- 资助金额:
$ 29.89万 - 项目类别:
Aerosol Ventilation to Reduce Ventilator Induced Lung Injury
气雾通气可减少呼吸机引起的肺损伤
- 批准号:
10383334 - 财政年份:2022
- 资助金额:
$ 29.89万 - 项目类别:
Ultrasound Enhanced Extracorporeal Membrane Oxygenation
超声增强体外膜氧合
- 批准号:
10323520 - 财政年份:2021
- 资助金额:
$ 29.89万 - 项目类别:
相似国自然基金
蜗牛粘液糖胺聚糖影响中性粒细胞粘附和迁移在治疗急性呼吸窘迫综合征中的作用研究
- 批准号:82360025
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
锌离子转运蛋白SLC39A1在急性呼吸窘迫综合征中的作用和机制
- 批准号:32371177
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
β-catenin诱导调节性T细胞代谢重编程及亚型转化在急性呼吸窘迫综合征的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
探索在急性呼吸窘迫综合征动物模型和患者长时间俯卧位通气过程中动态滴定呼气末正压的意义
- 批准号:82270081
- 批准年份:2022
- 资助金额:76 万元
- 项目类别:面上项目
特络细胞源性外泌体经JAK/STAT-miRNA-E2F轴修复肺血管改善急性呼吸窘迫综合征的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Combined Use of Polycarboxybetaine Coatings with a Selective FXIIa Inhibitor to Create Potent Biomaterial Anticoagulation Without Bleeding During Extracorporeal Life Support
聚羧基甜菜碱涂层与选择性 FXIIa 抑制剂的组合使用可在体外生命支持期间产生有效的生物材料抗凝作用而不会出血
- 批准号:
10444025 - 财政年份:2022
- 资助金额:
$ 29.89万 - 项目类别:
Combined Use of Polycarboxybetaine Coatings with a Selective FXIIa Inhibitor to Create Potent Biomaterial Anticoagulation Without Bleeding During Extracorporeal Life Support
聚羧基甜菜碱涂层与选择性 FXIIa 抑制剂的组合使用可在体外生命支持期间产生有效的生物材料抗凝作用而不会出血
- 批准号:
10743109 - 财政年份:2022
- 资助金额:
$ 29.89万 - 项目类别:
Role of Monolayer Curvature in Lung Surfactant Morphology and Mechanics
单层曲率在肺表面活性剂形态和力学中的作用
- 批准号:
10415829 - 财政年份:2021
- 资助金额:
$ 29.89万 - 项目类别:
Enhancing Adsorption of Lung Surfactants at the Air-Water Interface Using Methods from Colloid Stability Theory
利用胶体稳定性理论的方法增强肺表面活性剂在空气-水界面的吸附
- 批准号:
10829103 - 财政年份:2020
- 资助金额:
$ 29.89万 - 项目类别:
Enhancing Adsorption of Lung Surfactants at the Air-Water Interface Using Methods from Colloid Stability Theory
利用胶体稳定性理论的方法增强肺表面活性剂在空气-水界面的吸附
- 批准号:
9911287 - 财政年份:2020
- 资助金额:
$ 29.89万 - 项目类别: