Molecular mechanisms driving cessation of neural crest migration and aggregation into cranial ganglia
驱动神经嵴迁移和聚集到颅神经节停止的分子机制
基本信息
- 批准号:10309332
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAddressAdhesionsAutomobile DrivingBehaviorBinding SitesCadherinsCandidate Disease GeneCell Adhesion MoleculesCellsCephalicCharacteristicsCytoskeletonData SetDestinationsDevelopmentDorsalEctopic ExpressionElementsEmbryoEnhancersEpithelialFamilial DysautonomiaFibrosisFluorescence-Activated Cell SortingGangliaGene ExpressionGenesGenetic TranscriptionGenomeGoalsHealthIn Situ HybridizationKnowledgeLeadLightMaintenanceMalignant NeoplasmsMediatingMesenchymalMolecularNeural CrestNeural Crest CellNeural tubeNeuraxisNeuroblastomaPeripheralPeripheral Nervous SystemPhasePheochromocytomaPhysical condensationPigmentsPlayPopulationProcessReactionRegulator GenesRegulatory ElementReporterRoleSkeletonStructureStructure of trigeminal ganglionTissuesTranscriptTranscriptional RegulationUntranslated RNAVertebratesXCL1 genecell typecraniofacialepithelial to mesenchymal transitionexperimental studygastrulationgenome-widein vivoinsightloss of functionmelanomamigrationneuromechanismnovelsomitogenesisspatiotemporalstem-like celltargeted treatmenttranscription factortranscriptometranscriptome sequencingtumor progressionwound healing
项目摘要
Proposal Summary
Neural crest cells are an important stem-like cell population characterized by their multipotency and
migratory ability. Originating within the forming central nervous system, neural crest cells undergo a
spatiotemporally regulated epithelial-to-mesenchymal transition (EMT) to leave the neural tube and become
migratory. They then migrate extensively throughout the developing embryo, giving rise to a wide range of
derivatives as diverse as elements of the craniofacial skeleton and peripheral nervous system. In the post-
migratory phase, neural crest cells condense into different structures, a process that involves loss of migratory
characteristics, perhaps reflecting the reverse of the EMT process. While neural crest EMT has been studied
extensively, the mechanisms underlying the condensation of neural crest cells to form final derivatives is far less
well characterized. To address this knowledge gap, we propose to identify transcriptional changes that
occur during gangliogenesis with the goal of identifying those mediating alterations in intercellular
adhesion required for neural crest condensation into peripheral ganglia. Our hypothesis is that the gene
regulatory mechanisms that play a role during peripheral ganglion formation may reflect a reversal of the EMT
process. The goal is to uncover the molecular mechanisms that drive condensation of neural crest cells into
ganglia. These may in turn lead to clues regarding the underlying cause of certain types of neurocristopathies
like familial dysautonomia and neural crest-derived cancers like neuroblastoma and pheochromocytoma.
Aim 1: RNA-sequencing of pure populations of post-migratory cranial neural crest cells: RNA-sequencing
of isolated condensing cranial neural crest cells will allow us to identify novel transcription factors and adhesion
molecules that may drive neural crest condensation into cranial ganglia.
Aim 2: Functional analysis of genes selectively upregulated upon condensation to form ganglia:
Identified upregulated genes in condensing cranial neural crest cells will be validated by in situ hybridization and
Hybridization Chain Reaction. We will then perform systematic loss-of-function and ectopic expression
experiments on selected genes to examine their role in regulating condensation into and differentiation of
peripheral ganglia.
Aim 3: Characterization of cis-regulatory elements modulating gene expression during ganglion
condensation: To identify putative enhancers driving gene expression during cranial neural crest condensation,
we will perform ATAC-sequencing to identify conserved noncoding regions in the genome that are accessible to
transcription factors during cranial neural crest condensation.
提案摘要
神经嵴细胞是一种重要的干细胞样细胞群,其特征在于其多能性和
迁徙能力。神经嵴细胞起源于正在形成的中枢神经系统,经历了
时空调节的上皮间质转化(EMT)离开神经管并成为
迁徙的。然后它们在整个发育胚胎中广泛迁移,产生多种
其衍生物与颅面骨骼和周围神经系统的元素一样多样。在后-
迁移阶段,神经嵴细胞凝结成不同的结构,这个过程涉及迁移能力的丧失
特征,或许反映了 EMT 过程的相反过程。虽然神经嵴 EMT 已被研究
从广泛意义上讲,神经嵴细胞凝聚形成最终衍生物的机制要少得多
特征良好。为了解决这一知识差距,我们建议识别转录变化
发生在神经节生成过程中,目的是识别那些介导细胞间质改变的
神经嵴凝结成周围神经节所需的粘附力。我们的假设是基因
在外周神经节形成过程中发挥作用的调节机制可能反映了 EMT 的逆转
过程。目标是揭示驱动神经嵴细胞凝结成的分子机制
神经节。这些反过来可能会导致有关某些类型的神经脆病的根本原因的线索
例如家族性自主神经功能障碍和神经嵴衍生的癌症,例如神经母细胞瘤和嗜铬细胞瘤。
目标 1:对迁移后颅神经嵴细胞纯群体进行 RNA 测序:RNA 测序
分离的浓缩颅神经嵴细胞将使我们能够识别新的转录因子和粘附
可能驱动神经嵴凝结成颅神经节的分子。
目标 2:在凝结形成神经节时选择性上调的基因的功能分析:
浓缩颅神经嵴细胞中鉴定出的上调基因将通过原位杂交和
杂交链式反应。然后我们将进行系统的功能丧失和异位表达
对选定的基因进行实验,以检查它们在调节凝结和分化中的作用
周围神经节。
目标 3:神经节期间调节基因表达的顺式调控元件的表征
凝结:识别颅神经嵴凝结过程中驱动基因表达的推定增强子,
我们将进行 ATAC 测序来识别基因组中可访问的保守非编码区域
颅神经嵴凝结过程中的转录因子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hugo Alexander Urrutia其他文献
Hugo Alexander Urrutia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hugo Alexander Urrutia', 18)}}的其他基金
Molecular mechanisms driving cessation of neural crest migration and aggregation into cranial ganglia
驱动神经嵴迁移和聚集到颅神经节停止的分子机制
- 批准号:
10450672 - 财政年份:2021
- 资助金额:
$ 4.68万 - 项目类别:
Molecular mechanisms driving cessation of neural crest migration and aggregation into cranial ganglia
驱动神经嵴迁移和聚集到颅神经节停止的分子机制
- 批准号:
10669179 - 财政年份:2021
- 资助金额:
$ 4.68万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Regulation of Adherent Cell Proliferation by Matrix Viscoelasticity
基质粘弹性对贴壁细胞增殖的调节
- 批准号:
10735701 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
High Shear Stress Alters Gene Regulation in Pulmonary Arterial Hypertension
高剪切应力改变肺动脉高压的基因调控
- 批准号:
10557807 - 财政年份:2021
- 资助金额:
$ 4.68万 - 项目类别:
Molecular mechanisms driving cessation of neural crest migration and aggregation into cranial ganglia
驱动神经嵴迁移和聚集到颅神经节停止的分子机制
- 批准号:
10450672 - 财政年份:2021
- 资助金额:
$ 4.68万 - 项目类别: