High Shear Stress Alters Gene Regulation in Pulmonary Arterial Hypertension
高剪切应力改变肺动脉高压的基因调控
基本信息
- 批准号:10557807
- 负责人:
- 金额:$ 73.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-28 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAddressAdhesionsAffectAlgorithmsArteriesBMPR2 geneBiological AssayBiomanufacturingBlood PressureBlood VesselsBlood flowCell CommunicationCell ProliferationCell physiologyCellsChIP-seqChromatinCollaborationsCongenital Heart DefectsDNADNA BindingDataDepositionDiseaseDistalElastinElastin FiberEndothelial CellsEndotheliumEnhancersExposure toFamilyFibrinFunctional disorderFundingGelGene ExpressionGene Expression RegulationGenesGenomicsHeterozygoteHomeostasisImpairmentInflammationInterventionKnock-outLeftLinkLungMADH3 geneMapsMediatingMesenchymalMetabolismMusMuscle CellsNF-kappa BNatural regenerationNatureObstructionPathologyPatientsPeripheralPermeabilityPhysiologicalProteinsPulmonary HypertensionPulmonary Vascular ResistancePulmonary artery structureReportingResearch PersonnelSWI/SNF Family ComplexShunt DeviceSiteSmooth Muscle MyocytesStructureTechnologyTissuesTransgenic MiceTubeTubular formationUntranslated RNAVascular DiseasesVeno-Occlusive Diseasebioprintingchromatin remodelingderepressiondifferential expressiongene functiongenetic variantmembermonocytemortalityneutrophilnovelpreventpromoterpulmonary arterial hypertensionpulmonary artery endothelial cellrecruitresponseright ventricular failureshear stresstranscription factortranscriptome sequencing
项目摘要
Pulmonary arterial hypertension (PAH) is a debilitating disease in which occlusion of the peripheral arteries of
the lung causes elevation in pulmonary vascular resistance that culminates in right heart failure. In this proposal,
we relate the progressive nature of PAH to the impact of high shear stress (HSS) on pulmonary arterial (PA)
endothelial (EC) and smooth muscle cell (SMC) gene regulation and function with the view that we might be able
to use this mechanistic information to reverse established disease. In response to a previous RFA on ‘integrative
omics’, we related PAEC enhancer promoter interactions to differentially expressed genes (DEGs) under
physiologic conditions of laminar shear stress (LSS). LSS resulted in differential chromatin accessibility,
assessed by ATAC Seq, at sites where the transcription factor KLF4 bound DNA at H3K27ac enhancer sites, as
assessed by ChIP Seq. However, we could only relate the LSS enhancers to one third of DEGs on the basis of
‘nearest gene’. By incorporating HiChIP and the Activity by Contact (ABC) algorithm, we were able to relate
distal enhancers to 80% of DEGs, including skipped genes and those related to PAH, such as BMPR2. HSS is
prevalent when there is established vascular disease narrowing the vascular lumen, or if PAH is initiated by the
high pulmonary blood flow and pressure of a congenital heart defect. In our Preliminary Studies, we show that
HSS has a major impact on expression of PAEC homeostatic genes such as BMPR2, JAG1, ERG, and ELN;
moreover, there is heightened expression of endothelial mesenchymal transition (EndMT) genes, such as
SNAI1, and increased PAEC permeability and monocyte adhesion. Our ability to build PA EC-SMC bilayers in
fibrin gels allows us to study vascular cell interactions under LSS and HSS. Our overarching hypothesis is that
changes in PAEC and PAEC-SMC interaction in response to HSS adversely impact the enhancer landscape,
gene regulation and function, and can be reversed to prevent progressive PAH pathology. To investigate this,
we propose three Specific Aims. In Specific Aim 1, we characterize perturbations in the enhancer-promoter
landscape that account for aberrant gene regulation under HSS in control and PAH PAEC, and we link these
features to functional abnormalities in permeability, inflammation and EndMT, and to changes in genes and
proteins in the PA tissue of PAH patients. In Specific Aim 2, we biofabricate tubular structures with PAEC lining
the lumen and SMC surrounding the EC, to determine how cell-cell interactions impact HSS vs LSS mediated
gene regulation and function, including SMC proliferation and elastin fiber formation. In Specific Aim 3, we
focus on the pronounced HSS mediated reduction in ERG in control and PAH PAEC, to determine if this feature
is necessary and sufficient for the HSS-mediated abnormal PAEC gene expression and function. We determine
whether the HSS mediated elevation in miR-96 and the reduction in ERG can be subverted by the miR-96
antagomir, both in PAH cells and in a transgenic mouse with deficient ERG. These studies should provide new
avenues for intervention to reverse disease by subverting the root cause of HSS mediated-progressive PAH.
肺动脉高压(PAH)是一种使人衰弱的疾病,其周围动脉闭塞
肺部导致肺血管阻力升高,最终导致右心衰竭。
我们将 PAH 的进展性质与高剪切应力 (HSS) 对肺动脉 (PA) 的影响联系起来
内皮细胞 (EC) 和平滑肌细胞 (SMC) 基因调控和功能,我们或许能够
利用这一机制信息来逆转已确定的疾病,以回应之前关于“综合”的 RFA。
组学中,我们将 PAEC 增强子启动子相互作用与差异表达基因 (DEG) 联系起来
层流剪切应力(LSS)的生理条件导致染色质可及性的差异,
通过 ATAC Seq 评估转录因子 KLF4 在 H3K27ac 增强子位点结合 DNA 的位点,如
然而,我们只能根据 ChIP Seq 评估将 LSS 增强子与三分之一的 DEG 相关联。
通过结合 HiChIP 和接触活动 (ABC) 算法,我们能够将“最近的基因”关联起来。
80% DEG 的远端增强子,包括跳过的基因和与 PAH 相关的基因,例如 BMPR2。
当存在使血管腔变窄的已确定的血管疾病时,或者如果 PAH 是由
先天性心脏病的高肺血流量和压力在我们的初步研究中表明。
HSS 对 PAEC 稳态基因(如 BMPR2、JAG1、ERG 和 ELN)的表达有重大影响;
此外,内皮间质转化(EndMT)基因的表达令人惊叹,例如
SNAI1,并增加 PAEC 通透性和单核细胞粘附力,我们能够在其中构建 PA EC-SMC 双层。
纤维蛋白凝胶使我们能够研究 LSS 和 HSS 下血管细胞的相互作用。我们的首要假设是:
PAEC 和 PAEC-SMC 相互作用的变化响应 HSS 对增强剂景观产生不利影响,
基因调控和功能,并且可以逆转以预防进行性 PAH 病理学。
我们提出了三个具体目标,在具体目标 1 中,我们描述了增强子-启动子中的扰动。
解释 HSS 控制下的异常基因调控和 PAH PAEC 的景观,我们将这些联系起来
通透性、炎症和 EndMT 功能异常以及基因和
在具体目标 2 中,我们生物制造了带有 PAEC 衬里的管状结构。
EC 周围的管腔和 SMC,以确定细胞间相互作用如何影响 HSS 与 LSS 介导的
在具体目标 3 中,我们研究了基因调控和功能,包括 SMC 增殖和弹性蛋白纤维形成。
重点关注对照和 PAH PAEC 中 HSS 介导的 ERG 显着降低,以确定该特征是否
我们确定,对于 HSS 介导的异常 PAEC 基因表达和功能是必要且充分的。
HSS 介导的 miR-96 升高和 ERG 降低是否可以被 miR-96 颠覆
antagomir,无论是在 PAH 细胞还是在 ERG 缺陷的转基因小鼠中,这些研究应该提供新的结果。
通过颠覆 HSS 介导的进行性 PAH 的根本原因来逆转疾病的干预途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marlene Rabinovitch其他文献
Marlene Rabinovitch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marlene Rabinovitch', 18)}}的其他基金
Pulmonary Hypertension in Genetically Modified Mice
转基因小鼠的肺动脉高压
- 批准号:
9459614 - 财政年份:2017
- 资助金额:
$ 73.97万 - 项目类别:
Cell Specific Localization of Altered Gene Expression in Pulmonary Hypertension
肺动脉高压中基因表达改变的细胞特异性定位
- 批准号:
8211919 - 财政年份:2011
- 资助金额:
$ 73.97万 - 项目类别:
Cell Specific Localization of Altered Gene Expression in Pulmonary Hypertension
肺动脉高压中基因表达改变的细胞特异性定位
- 批准号:
8335473 - 财政年份:2011
- 资助金额:
$ 73.97万 - 项目类别:
iPSC Derived EC as Surrogates Using Pulmonary Hypertension as a Prototype Disease
使用肺动脉高压作为原型疾病的 iPSC 衍生 EC 作为替代物
- 批准号:
8689146 - 财政年份:2011
- 资助金额:
$ 73.97万 - 项目类别:
iPSC Derived EC as Surrogates Using Pulmonary Hypertension as a Prototype Disease
使用肺动脉高压作为原型疾病的 iPSC 衍生 EC 作为替代物
- 批准号:
8294696 - 财政年份:2011
- 资助金额:
$ 73.97万 - 项目类别:
iPSC Derived EC as Surrogates Using Pulmonary Hypertension as a Phototype Disease
使用肺动脉高压作为光型疾病,iPSC 衍生 EC 作为替代物
- 批准号:
8093544 - 财政年份:2011
- 资助金额:
$ 73.97万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Regulation of Adherent Cell Proliferation by Matrix Viscoelasticity
基质粘弹性对贴壁细胞增殖的调节
- 批准号:
10735701 - 财政年份:2023
- 资助金额:
$ 73.97万 - 项目类别:
Molecular mechanisms driving cessation of neural crest migration and aggregation into cranial ganglia
驱动神经嵴迁移和聚集到颅神经节停止的分子机制
- 批准号:
10309332 - 财政年份:2021
- 资助金额:
$ 73.97万 - 项目类别:
Molecular mechanisms driving cessation of neural crest migration and aggregation into cranial ganglia
驱动神经嵴迁移和聚集到颅神经节停止的分子机制
- 批准号:
10450672 - 财政年份:2021
- 资助金额:
$ 73.97万 - 项目类别: