Advancing epilepsy diagnosis with flexible, high-resolution thin-film electrodes
利用灵活的高分辨率薄膜电极推进癫痫诊断
基本信息
- 批准号:10297290
- 负责人:
- 金额:$ 183.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:Advanced DevelopmentAffectAmericanAnimal ModelAreaBiologyBrainClinicalClinical TrialsCollaborationsCommunitiesComputersDataDevelopmentDevice ApprovalDevice DesignsDevice SafetyDevicesDiagnosisDiagnosticDiseaseDrug resistanceEdemaEffectivenessElectrodesEngineeringEnrollmentEpilepsyExcisionFDA approvedFaceFailureFilmFreedomFrequenciesFutureHemorrhageHumanIndividualIndustrializationInflammationInfrastructureInterventionIntractable EpilepsyLength of StayLocationMeasurementMeasuresMedicalMicroelectrodesModernizationMonitorMorbidity - disease rateMorphologic artifactsMulti-Institutional Clinical TrialNeocortexNeurologicNeurosurgical ProceduresNew YorkNoiseNotificationOperative Surgical ProceduresOutcomePainPartial EpilepsiesPatientsPatternPerformancePhasePlayPreclinical TestingRandomizedRecordsResistanceResolutionRiskRodentRoleSafetySalesSamplingScientific Advances and AccomplishmentsScientistSeizuresSignal TransductionSiteStatistical Data InterpretationSterilizationSurveysSwellingSystemTechnologyTestingTherapeuticThickThinnessTissuesTranslatingUniversitiesUtahWorkbasebiomaterial compatibilitycomputerized data processingcostdata acquisitiondata visualizationdensitydiagnostic valueflexibilityimplantable deviceimplantationimprovedinterestlarge scale dataliquid crystal polymermedical schoolsmicrostimulationmicrosystemsminiaturizemortalityneocorticalnervous system disorderneuroinflammationneurotransmissionnext generationnonhuman primatenovelpatient safetypatient tolerabilitypersonalized approachpersonalized medicineprototyperelating to nervous systemresearch clinical testingretina implantationsafety studystandard of caresuccess
项目摘要
Project Summary
To advance the development of next-generation personalized therapies for long-term seizure freedom, we
urgently need technologies that improve seizure diagnostics while reducing risks associated with invasive
neurosurgical procedures. Among the more than 1,000,000 Americans with uncontrolled focal epilepsy, many
have poorly localized seizure foci. These individuals face the highest rates of ‘failure’ (i.e., ongoing seizures)
after epilepsy surgery. That failure reflects the biology of their epilepsy as well as the overlap of seizure foci with
essential cortical areas. However, limits of current technologies also play a critical role in the high failure rate as
we are currently limited in our ability to sample wide regions of the neocortex (i.e., stereoEEG) or to record broad
neocortical regions without inducing pain, swelling, and neuroinflammatory tissue damage (i.e., subdural grid
and strip recordings).
To meet this need for safer, more effective invasive electrode studies and simultaneously enable discovery to
advance next-generation therapies, this UG3/UH3 clinical trial project leverages a successful, long-term
collaboration between clinicians, engineers, material scientists, neuroscientists and industrial partners at New
York University School of Medicine, New York University, Duke University, the University of Utah, Blackrock
Microsystems, and Dyconex to translate modern thin-film technology into next generation FDA-approved
implantable neurological devices. We have developed and extensively tested a novel electrode array based on
liquid crystal polymer thin-film (LCP-TF) technology with partner Dyconex, AG. When combined with large-scale
data acquisition systems, LCP-TF electrodes will provide higher quality neural recordings than existing FDA-
approved electrode arrays, with improved safely and at an affordable cost.
We propose to obtain traditional 510(k) approval from the FDA for short-term implantation (<30 days) of LCP-TF
electrodes to (1) improve surgical tolerability for patients with neocortical, focal, drug-resistant epilepsy
undergoing invasive electrode studies and (2) advance diagnostic capabilities to determine the location of
seizure foci. Our preliminary work in a non-human primate animal model led to a prototype device nearly identical
to the final device design planned for clinical testing. This work establishes supporting data for entry into
preclinical testing in the 3-year UG3 phase (Aims 1-3) that will lead to 510(k)-approved devices (Aim 4) for a
single-site, randomized-controlled pilot clinical trial in the 2-year UH3 phase (Aim 5) that will test the hypothesis
that performing epilepsy diagnostic studies with LCP-TF electrodes, compared to CG electrodes, improves both
surgical tolerability and diagnostic effectiveness. These efforts will advance the development of next-generation
precision approaches to treating epilepsy as well as support future development of LCP-TF electrodes for other
neurological disorders. Low-cost, FDA-approved LCP-TF electrodes have the potential to revolutionize the
treatment of a wide range of neurological disorders
项目概要
为了推进下一代个性化疗法的开发,以实现长期无癫痫发作,我们
迫切需要改进癫痫诊断的技术,同时降低与侵入性相关的风险
在超过 1,000,000 名患有不受控制的局灶性癫痫的美国人中,有许多人接受了神经外科手术。
这些人的癫痫病灶定位不佳,“失败”率最高(即持续癫痫发作)。
癫痫手术后的失败反映了他们癫痫的生物学特性以及癫痫病灶的重叠。
然而,当前技术的局限性也在高失败率中发挥着关键作用。
目前,我们对新皮质广泛区域(即立体脑电图)进行采样或记录广泛区域的能力受到限制。
新皮质区域不会引起疼痛、肿胀和神经炎性组织损伤(即硬膜下网格
和条带录音)。
为了满足对更安全、更有效的侵入式电极研究的需求,同时使发现能够
下一代疗法,这个先进的 UG3/UH3 临床试验项目利用了成功的、长期的
New 的上级、工程师、材料科学家、神经科学家和工业合作伙伴之间的合作
约克大学医学院、纽约大学、杜克大学、犹他大学、贝莱德大学
Microsystems 和 Dyconex 将现代薄膜技术转化为 FDA 批准的下一代技术
我们开发并广泛测试了一种基于植入式神经设备的新型电极阵列。
与合作伙伴 Dyconex, AG 大规模结合液晶聚合物薄膜 (LCP-TF) 技术。
数据采集系统,LCP-TF 电极将提供比现有 FDA 更高质量的神经记录
经批准的电极阵列,经过安全改进且成本可承受。
我们建议获得 FDA 对 LCP-TF 短期植入(<30 天)的传统 510(k) 批准
电极 (1) 提高新皮质、局灶性、耐药性癫痫患者的手术耐受性
进行侵入性电极研究,以及 (2) 先进的诊断能力以确定电极的位置
我们在非人类灵长类动物模型中的初步工作产生了几乎相同的原型设备。
这项工作为进入临床测试的最终设备设计建立了支持数据。
3 年 UG3 阶段(目标 1-3)的临床前测试将导致 510(k) 批准的设备(目标 4)
为期 2 年的 UH3 阶段(目标 5)的单中心、随机对照试点临床试验将检验该假设
与 CG 电极相比,使用 LCP-TF 电极进行癫痫诊断研究可以改善两者
这些努力将促进下一代的发展。
治疗癫痫的精确方法,并支持 LCP-TF 电极在其他领域的未来开发
经 FDA 批准的低成本 LCP-TF 电极有可能彻底改变神经系统疾病。
治疗多种神经系统疾病
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Kyle Franklin其他文献
Robert Kyle Franklin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Kyle Franklin', 18)}}的其他基金
Advancing Epilepsy Diagnosis with Flexible, High-Resolution Thin-Film Electrodes
利用灵活的高分辨率薄膜电极推进癫痫诊断
- 批准号:
10753771 - 财政年份:2023
- 资助金额:
$ 183.89万 - 项目类别:
Multi-channel MR-compatible flexible microelectrode for recording and stimulation
用于记录和刺激的多通道 MR 兼容柔性微电极
- 批准号:
9139158 - 财政年份:2016
- 资助金额:
$ 183.89万 - 项目类别:
相似国自然基金
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高尿酸调控TXNIP驱动糖代谢重编程影响巨噬细胞功能
- 批准号:82370895
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
倒装芯片超声键合微界面结构演变机理与影响规律
- 批准号:52305599
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
寒地城市学区建成环境对学龄儿童心理健康的影响机制与规划干预路径研究
- 批准号:52378051
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
原位研究聚变燃料纯化用Pd-Ag合金中Ag对辐照缺陷演化行为的影响及其相互作用机制
- 批准号:12305308
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of serum advanced glycation end-products in altering tendon properties with diabetes
血清晚期糖基化终末产物在改变糖尿病肌腱特性中的作用
- 批准号:
10737036 - 财政年份:2023
- 资助金额:
$ 183.89万 - 项目类别:
The Role of Sleep in the Relationships Among Adverse Childhood Experiences, Mental Health Symptoms, and Persistent/Recurrent Pain during Adolescence
睡眠在不良童年经历、心理健康症状和青春期持续/复发性疼痛之间关系中的作用
- 批准号:
10676403 - 财政年份:2023
- 资助金额:
$ 183.89万 - 项目类别:
Quantitative characterization of the liver-pancreas axis in diabetes via multiparametric magnetic resonance elastography
通过多参数磁共振弹性成像定量表征糖尿病肝胰轴
- 批准号:
10718333 - 财政年份:2023
- 资助金额:
$ 183.89万 - 项目类别:
Mechanisms of NMDAR contribution to traumatic injury in retinal ganglion cells
NMDAR对视网膜神经节细胞创伤性损伤的作用机制
- 批准号:
10570666 - 财政年份:2023
- 资助金额:
$ 183.89万 - 项目类别:
Novel first-in-class Therapeutics for Rheumatoid Arthritis
类风湿关节炎的一流新疗法
- 批准号:
10696749 - 财政年份:2023
- 资助金额:
$ 183.89万 - 项目类别: