Mechanisms of NMDAR contribution to traumatic injury in retinal ganglion cells
NMDAR对视网膜神经节细胞创伤性损伤的作用机制
基本信息
- 批准号:10570666
- 负责人:
- 金额:$ 19.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgeAmericanAnimal ModelAreaAutomobile DrivingAxonBiophysicsBlindnessBrain DiseasesBrain regionCalciumCell DeathCell SurvivalCell physiologyCellsCessation of lifeDevelopmentDiseaseDisease ManagementDisease ProgressionEarly DiagnosisEarly treatmentElectrophysiology (science)EquilibriumExposure toEyeEye diseasesFeedbackFunctional disorderGlaucomaGlutamatesGoalsHealthcareHumanImageImpairmentIn VitroIndividualInjuryInterventionIntrinsic factorKnowledgeLearningLightLinkMediatorMetabolicMetabolic stressMissionModalityModelingMonitorMorphologyMusN-Methyl-D-Aspartate ReceptorsNerve CrushNerve DegenerationNeuronal InjuryNeuronsNeurotransmittersOptic NerveOutputPathologicPathologyPathway interactionsPhysiologic Intraocular PressurePhysiologicalPopulationPredispositionPreparationPrognosisPropertyResearchRetinaRetinal DegenerationRetinal Ganglion CellsRoleStructureSurfaceSurvival RateSynapsesTestingTherapeutic InterventionTraumaTraumatic Brain InjuryTraumatic injuryVisionVisualWorkadvanced diseaseaxon injuryaxonopathyblindcell injurycell typedemographicsdesignexcitotoxicityexperimental studyimprovedinnovationinsightinterestmouse modelnerve damagenervous system disorderneural circuitneuropathologyneuroprotectionnoveloptic nerve disorderoptimal treatmentspreservationpressurerepairedresponseretinal axonretinal damageretinal ganglion cell degenerationretinal neuronsimulationtoolvisual informationvisual processing
项目摘要
Project Summary
Glaucoma is the most prevalent cause of irreversible blindness worldwide. It is estimated that it affects over 3
million Americans and more than 100,000 are blind from this incurable disease. Often, the primary insult in
glaucoma is elevated eye pressure, which leads to optic neuropathy and damage to the axons of retinal
ganglion cells (RGCs). RGCs are the output neurons of the retina that carry all visual information to other brain
regions; their death results in loss of visual function. Current treatment options are focused on addressing
elevated intraocular pressure. While this and similar interventions can delay the progression of glaucoma, even
with optimal treatment, some visual deficits occur, and vision loss is irreversible. Therefore, there is a critical
need for early detection and treatment aimed at neuroprotection.
Animal models have proven to be instrumental in understanding the neuropathology of RGC death. Among
them, a mouse model of optic nerve crush (ONC) is of particular note because it leads to precisely timed
degeneration of RGCs. Mice, like humans, have multiple RGC subtypes that differ in morphology, are
embedded in separate neural circuits, and provide distinct visual functions. For reasons that have not yet been
identified, many injury types disproportionately affect some RGC subtypes. Understanding the factors that
promote cell survival is essential to design strategies to improve disease management.
The goal of this proposal is to analyze the role of glutamatergic NMDA receptors to pathological changes in
individual RGCs belonging to different subtypes. NMDA receptors are known mediators of calcium overload,
excitotoxicity, and their abnormal activation can lead to cell death via multiple pathways. We will take an
innovative approach that combines biophysically realistic modeling, electrophysiology, as well as glutamate
and calcium imaging to provide a detailed description of the changes in the structure and function of RGCs
subjected to traumatic damage. We will focus on the physiological status and responsiveness to stimulation in
the injured neuron. This will enable us to elucidate the differences in the metabolic state of the cells and the
contribution of parameters associated with the neuronal activity to visual deficits and prognosis.
The proposed research will substantially advance our understanding of the mechanisms involved in neuronal
responses to damage. The lessons learned in RGC populations will be combined and integrated to develop a
comprehensive theoretical description of the impact of neuronal activity on survival after an insult and readily
generalized to provide further understanding of other neuropathological conditions. Finally, our research will
identify novel targets for potential neuroprotective interventions to preserve visual function.
项目概要
青光眼是全世界不可逆转失明的最常见原因。估计影响超过3个
数百万美国人和超过 10 万人因这种不治之症而失明。通常,主要的侮辱是
青光眼是眼压升高,导致视神经病变和视网膜轴突损伤
神经节细胞(RGC)。 RGC 是视网膜的输出神经元,将所有视觉信息传递到其他大脑
地区;他们的死亡导致视觉功能丧失。目前的治疗方案主要集中于解决
眼压升高。虽然这种干预措施和类似的干预措施可以延缓青光眼的进展,但
经过最佳治疗后,会出现一些视力缺陷,并且视力丧失是不可逆转的。因此,有一个关键的
需要早期发现和治疗以保护神经。
动物模型已被证明有助于了解 RGC 死亡的神经病理学。之中
其中,视神经挤压 (ONC) 的小鼠模型特别值得注意,因为它会导致精确定时的
RGC 退化。与人类一样,小鼠也有多种形态不同的 RGC 亚型,
嵌入单独的神经回路中,并提供不同的视觉功能。由于尚未解决的原因
已发现,许多损伤类型不成比例地影响某些 RGC 亚型。了解影响因素
促进细胞存活对于设计改善疾病管理的策略至关重要。
本提案的目的是分析谷氨酸能 NMDA 受体对病理变化的作用
属于不同亚型的各个 RGC。 NMDA 受体是已知的钙超载介质,
兴奋性毒性及其异常激活可通过多种途径导致细胞死亡。我们将采取
结合生物物理真实建模、电生理学以及谷氨酸的创新方法
和钙成像,详细描述 RGC 结构和功能的变化
遭受外伤。我们将重点关注生理状态和对刺激的反应
受伤的神经元。这将使我们能够阐明细胞代谢状态和
与神经元活动相关的参数对视觉缺陷和预后的贡献。
拟议的研究将大大增进我们对神经元参与机制的理解
对损害的反应。 RGC 人群中吸取的经验教训将被结合和整合,以制定一个
神经元活动对损伤后生存影响的全面理论描述,并且很容易
推广以提供对其他神经病理学状况的进一步了解。最后,我们的研究将
确定潜在神经保护干预措施的新目标,以保护视觉功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alon Poleg-Polsky其他文献
Alon Poleg-Polsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alon Poleg-Polsky', 18)}}的其他基金
Novel experimental and machine learning - assisted techniques to assess receptive field functionality in the retina
新颖的实验和机器学习辅助技术来评估视网膜感受野功能
- 批准号:
10712234 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Mechanisms of direction selectivity in starburst amacrine cells
星爆无长突细胞的方向选择性机制
- 批准号:
10305620 - 财政年份:2019
- 资助金额:
$ 19.44万 - 项目类别:
Mechanisms of direction selectivity in starburst amacrine cells
星爆无长突细胞的方向选择性机制
- 批准号:
10533323 - 财政年份:2019
- 资助金额:
$ 19.44万 - 项目类别:
Mechanisms of direction selectivity in starburst amacrine cells
星爆无长突细胞的方向选择性机制
- 批准号:
10063526 - 财政年份:2019
- 资助金额:
$ 19.44万 - 项目类别:
相似国自然基金
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
运动状态下代谢率的年龄变化特征及对人体热舒适的影响研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于堆叠式集成学习探索人居环境对生物学年龄的影响
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 19.44万 - 项目类别:
Stopping Hydroxychloroquine In Elderly Lupus Disease (SHIELD)
停止使用羟氯喹治疗老年狼疮病 (SHIELD)
- 批准号:
10594743 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别:
Identifying and testing a tailored strategy to achieve equity in blood pressure control in PACT
确定并测试量身定制的策略,以在 PACT 中实现血压控制的公平性
- 批准号:
10538513 - 财政年份:2023
- 资助金额:
$ 19.44万 - 项目类别: