Overcoming the immune-suppressive tumor microenvironment through in situ vaccination nanotechnology.

通过原位疫苗接种纳米技术克服免疫抑制肿瘤微环境。

基本信息

  • 批准号:
    10227062
  • 负责人:
  • 金额:
    $ 58.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Summary The immune-suppressive microenvironment generated by tumors is a key barrier to immune clearance and thereby, enables cancer to manifest. We propose to overcome this barrier using a plant virus-like nanopar- ticle (VLP) platform technology for in situ vaccination, to eliminate local immunosuppression and generate ef- fective local and systemic anti-tumor immunity. We recently demonstrated that plant-produced, engineered VLP-based nanotechnologies stimulate a potent anti-tumor immune response in mouse models of metastatic melanoma, ovarian cancer, and breast cancer. Data indicate that the effect is systemic and durable, resulting in immune-memory and protection from recurrence. Preliminary studies in companion dogs with metastatic melanoma indicate that the potent anti-tumor efficacy can be replicated in the canine model, which has high relevance to human melanoma. In situ vaccination provides a personalized treatment approach by relieving the patient's tumor-mediated immunosuppression and potentiating anti-tumor immunity against antigens ex- pressed by their own tumor. The proposed nanoengineering approach using plant VLPs would improve the standard of care in several ways. First, in situ vaccination will increase the frequency of antigen-specific T cells, leading to long-lasting immunologic memory; this is in contrast to checkpoint inhibitors, which are not an- tigen specific, activate all antigen-experienced T cells and result in off-target immune toxicities. Second, FDA- approved in situ vaccination using T-VEC demonstrates the approach but is limited because of the use of at- tenuated herpes virus, which can be infectious, has poor stability and an extraordinary price per dose. While our supporting data indicate potent efficacy in various tumor models, the underlying immunology is quite unique and not yet completely understood. Therefore, the essence of this proposal is to decipher the engineering design space of the potent nanotechnology and to delineated the underlying mecha- nism of action. Therefore, this proposal sets out to fulfill the following aims: 1) To decipher the VLP's molecu- lar features triggering the potent efficacy. 2) To delineate the underlying mechanisms of immune activation primed by the VLPs. 3) To gain further insights into the mechanism of action and efficacy through study of companion dogs with oral melanoma. A multi-PI partnership and collaborating investigators will contribute to the success of the program. Together, data will provide detailed mechanisms of anti-tumor immune activation by engineered VLP nanotechnologies and will inform nanoengineering to further improve the approach and begin the effort to test it in human patients.
概括 肿瘤产生的免疫抑制微环境是免疫清除的关键障碍 从而使癌症得以显现。我们建议使用类似植物病毒的纳米颗粒来克服这一障碍 Ticle(VLP)平台技术用于原位疫苗接种,消除局部免疫抑制并产生效果 有效的局部和全身抗肿瘤免疫。我们最近证明,植物生产的、工程设计的 基于 VLP 的纳米技术可在转移性小鼠模型中刺激有效的抗肿瘤免疫反应 黑色素瘤、卵巢癌和乳腺癌。数据表明,这种影响是系统性的、持久的, 免疫记忆和防止复发。患有转移性伴侣犬的初步研究 黑色素瘤表明,有效的抗肿瘤功效可以在犬模型中复制,该模型具有很高的抗肿瘤效果。 与人类黑色素瘤的相关性。原位疫苗接种提供了一种个性化的治疗方法,可减轻 患者的肿瘤介导的免疫抑制和增强针对抗原的抗肿瘤免疫 被自己的肿瘤压迫。所提出的使用植物 VLP 的纳米工程方法将改善 护理标准有多种方式。首先,原位疫苗接种会增加抗原特异性T的出现频率 细胞,产生持久的免疫记忆;这与检查点抑制剂相反,检查点抑制剂不是 抗原特异性,激活所有经历过抗原的 T 细胞并导致脱靶免疫毒性。其次,FDA—— 批准使用 T-VEC 进行原位疫苗接种证明了该方法,但由于使用了 at- 减毒疱疹病毒具有传染性,稳定性差,每剂价格昂贵。尽管 我们的支持数据表明在各种肿瘤模型中具有强大的功效,潜在的免疫学是 相当独特且尚未完全理解。因此,本提案的实质是破译 强大的纳米技术的工程设计空间,并描绘出底层的机械结构 行动主义。因此,该提案旨在实现以下目标:1)破译VLP的分子 lar 的特点触发了强大的功效。 2)描绘免疫激活的潜在机制 由 VLP 启动。 3)通过研究进一步了解作用机制和功效 患有口腔黑色素瘤的伴侣犬。多 PI 伙伴关系和合作研究人员将有助于 该计划的成功。总之,数据将提供抗肿瘤免疫激活的详细机制 通过工程化 VLP 纳米技术,并将为纳米工程提供信息,以进一步改进该方法和 开始在人类患者身上进行测试。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Endosomal toll-like receptors play a key role in activation of primary human monocytes by cowpea mosaic virus.
内体 Toll 样受体在豇豆花叶病毒激活原代人单核细胞中发挥关键作用。
  • DOI:
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Albakri, Marwah M;Veliz, Frank A;Fiering, Steven N;Steinmetz, Nicole F;Sieg, Scott F
  • 通讯作者:
    Sieg, Scott F
Transcriptomics of Canine Inflammatory Mammary Cancer Treated with Empty Cowpea Mosaic Virus Implicates Neutrophils in Anti-Tumor Immunity.
用空豇豆花叶病毒治疗犬炎症性乳腺癌的转录组学表明中性粒细胞参与抗肿瘤免疫。
  • DOI:
  • 发表时间:
    2023-09-13
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Barreno, Lucia;Sevane, Natalia;Valdivia, Guillermo;Alonso;Suarez;Alonso;Fiering, Steven;Beiss, Veronique;Steinmetz, Nicole F;Perez;Peña, Laura
  • 通讯作者:
    Peña, Laura
Alfalfa mosaic virus nanoparticles-based in situ vaccination induces antitumor immune responses in breast cancer model.
基于苜蓿花叶病毒纳米颗粒的原位疫苗接种可在乳腺癌模型中诱导抗肿瘤免疫反应。
  • DOI:
    10.2217/nnm-2020-0311
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    M. Shahgolzari;M. Pazhouh;eh;eh;M. Milani;S. Fiering;A. Khosroushahi
  • 通讯作者:
    A. Khosroushahi
Antibody Response against Cowpea Mosaic Viral Nanoparticles Improves In Situ Vaccine Efficacy in Ovarian Cancer.
针对豇豆花叶病毒纳米颗粒的抗体反应提高了卵巢癌原位疫苗的功效。
  • DOI:
  • 发表时间:
    2020-03-24
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Shukla, Sourabh;Wang, Chao;Beiss, Veronique;Steinmetz, Nicole F
  • 通讯作者:
    Steinmetz, Nicole F
Using nanoparticles for in situ vaccination against cancer: mechanisms and immunotherapy benefits.
使用纳米颗粒进行原位癌症疫苗接种:机制和免疫疗法的好处。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gorbet, Michael;Singh, Akansha;Mao, Chenkai;Fiering, Steven;Ranjan, Ashish
  • 通讯作者:
    Ranjan, Ashish
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

STEVEN FIERING其他文献

STEVEN FIERING的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('STEVEN FIERING', 18)}}的其他基金

Toward translation of a plant virus-based in situ vaccination nanotechnology
基于植物病毒的原位疫苗接种纳米技术的转化
  • 批准号:
    10688114
  • 财政年份:
    2022
  • 资助金额:
    $ 58.33万
  • 项目类别:
Toward translation of a plant virus-based in situ vaccination nanotechnology
基于植物病毒的原位疫苗接种纳米技术的转化
  • 批准号:
    10529016
  • 财政年份:
    2022
  • 资助金额:
    $ 58.33万
  • 项目类别:
Program for Oncology Workforce Education and Research Experience at Dartmouth
达特茅斯肿瘤学劳动力教育和研究经验计划
  • 批准号:
    10478944
  • 财政年份:
    2020
  • 资助金额:
    $ 58.33万
  • 项目类别:
Program for Oncology Workforce Education and Research Experience at Dartmouth
达特茅斯肿瘤学劳动力教育和研究经验计划
  • 批准号:
    10251966
  • 财政年份:
    2020
  • 资助金额:
    $ 58.33万
  • 项目类别:
Program for Oncology Workforce Education and Research Experience at Dartmouth
达特茅斯肿瘤学劳动力教育和研究经验计划
  • 批准号:
    10680490
  • 财政年份:
    2020
  • 资助金额:
    $ 58.33万
  • 项目类别:
Program for Oncology Workforce Education and Research Experience at Dartmouth
达特茅斯肿瘤学劳动力教育和研究经验计划
  • 批准号:
    10023616
  • 财政年份:
    2020
  • 资助金额:
    $ 58.33万
  • 项目类别:
Program for Oncology Workforce Education and Research Experience at Dartmouth
达特茅斯肿瘤学劳动力教育和研究经验计划
  • 批准号:
    10680490
  • 财政年份:
    2020
  • 资助金额:
    $ 58.33万
  • 项目类别:
Overcoming the immune-suppressive tumor microenvironment through in situ vaccination nanotechnology.
通过原位疫苗接种纳米技术克服免疫抑制肿瘤微环境。
  • 批准号:
    9979824
  • 财政年份:
    2017
  • 资助金额:
    $ 58.33万
  • 项目类别:
Illumina ISCAN Microarray Reader
Illumina ISCAN 微阵列芯片阅读器
  • 批准号:
    9075704
  • 财政年份:
    2016
  • 资助金额:
    $ 58.33万
  • 项目类别:
Magnetic nanoparticle Immunotherapy against Ovarian Cancer
磁性纳米颗粒卵巢癌免疫治疗
  • 批准号:
    8545105
  • 财政年份:
    2013
  • 资助金额:
    $ 58.33万
  • 项目类别:

相似国自然基金

腺相关病毒载体介导的circ_12952基因治疗通过激活结直肠癌抗肿瘤免疫增强PD-1抗体疗效的机制研究及临床探索
  • 批准号:
    82303073
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
聚合物囊泡靶向骨组织递送mRNA编码抗骨硬化蛋白单链抗体治疗骨质疏松的研究
  • 批准号:
    82372442
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于抗原抗体相互作用的抗体定向虚拟设计与筛选
  • 批准号:
    32370697
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
CDK4/6抑制剂通过IFN/JAK/STAT1信号轴增强PD-1抗体抗肝细胞癌疗效的机制研究
  • 批准号:
    82373313
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
P29单克隆抗体的3-羟基丁酰化修饰对其稳定性影响及提升抗泡型包虫病作用的研究
  • 批准号:
    82360402
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Removing sialic acid ligands of CD28 to enhance T cell cancer immunotherapy
去除CD28的唾液酸配体以增强T细胞癌症免疫治疗
  • 批准号:
    10668007
  • 财政年份:
    2023
  • 资助金额:
    $ 58.33万
  • 项目类别:
Characterizing antibody responses to HIV-1 vaccination in next-generation immune humanized mice
表征下一代免疫人源化小鼠对 HIV-1 疫苗接种的抗体反应
  • 批准号:
    10673292
  • 财政年份:
    2023
  • 资助金额:
    $ 58.33万
  • 项目类别:
Basic and Translational Mechanisms of Alloimmunization to RBC Transfusion. Project 3
红细胞输注同种免疫的基本和转化机制。
  • 批准号:
    10711670
  • 财政年份:
    2023
  • 资助金额:
    $ 58.33万
  • 项目类别:
Immunological Basis of Autoimmune Addison's Disease in a Novel Canine Model System
新型犬模型系统中自身免疫阿狄森氏病的免疫学基础
  • 批准号:
    10830527
  • 财政年份:
    2023
  • 资助金额:
    $ 58.33万
  • 项目类别:
Strategies to attenuate the indirect alloimmune response in encapsulated pancreatic islet transplantation
减弱封装胰岛移植中间接同种免疫反应的策略
  • 批准号:
    10678425
  • 财政年份:
    2023
  • 资助金额:
    $ 58.33万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了