PROJECT 2
项目2
基本信息
- 批准号:10225390
- 负责人:
- 金额:$ 36.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-09 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAddressAdvanced DevelopmentAnimal ModelAnimalsAntibody FormationAntiviral AgentsAutomobile DrivingBRCA1 geneBindingBiochemicalBiochemistryBiologicalBiological AssayBiologyBiophysicsBreastBreast Cancer CellBreast Cancer ModelCellsCellular AssayChemicalsClinicalCollaborationsComplexCrystallizationCytosineDNADNA BindingDNA SequenceDeaminaseDeaminationDefectDeoxycytidineDevelopmentDrug resistanceEnzyme InhibitionEnzymesEstrogen receptor positiveEvolutionFoundationsFutureGoalsGraphInheritedLeadLigand BindingLigandsMalignant NeoplasmsMammary NeoplasmsMediatingMetastatic breast cancerMethodsModelingModificationMolecularMutagenesisMutateMutationNeoplasm MetastasisNucleic Acid ProbesNucleic AcidsNucleotidesOligonucleotidesOutcomePIK3CA genePhysiologicalPositioning AttributePrimary NeoplasmProcessProteinsRNAReagentReportingResearchResistanceRoentgen RaysRoleServicesSingle-Stranded DNAStructureTechnologyTestingThe Cancer Genome AtlasTherapeuticTreatment FailureUracilVariantVirus DiseasesWorkbaseclinical translationcomputational chemistrydesigndrug developmentdrug discoveryexperimental studyfeature detectionforginghomologous recombinationimprovedin vivoinhibitor/antagonistinnovationmalignant breast neoplasmmolecular recognitionmouse modelmultidisciplinarynovelnovel strategiesoverexpressionpreferencepreventprogramssmall moleculesmall molecule inhibitorstructural biologytherapeutic developmenttherapy outcometumor
项目摘要
PROJECT 2 – CHEMICAL BIOLOGY OF DNA DEAMINASES IN BREAST CANCER
ABSTRACT
APOBEC enzymes are single-stranded DNA cytosine-to-uracil deaminases that normally protect cells from
viral infections. However, APOBEC3B (A3B) has been implicated in mutations in breast cancer that drive tumor
evolution and contribute to the development of drug resistance and, ultimately, therapy failure. A3B is
overexpressed in over half of all estrogen receptor (ER)-positive breast tumors, the most common type, and is
associated with poor overall survival. Our Program has shown that inhibition of A3B-mediated tumor evolution
improves therapy outcomes in a mouse model of ER-positive breast cancer. Our Program’s unifying
hypothesis is that A3B inhibition will prevent a large proportion of new mutations in ER-positive breast cancer,
thereby improving the durability of current treatments and resulting in better overall outcomes. To address this
hypothesis our Program is focused on understanding the biology of A3B in breast cancer cells (Project 1);
developing innovative nucleic acid probes to molecularly characterize how A3B engages DNA substrates and
small molecules to inhibit A3B-catalyzed breast cancer mutations (Project 2); and generating A3B x-ray
structures with nucleic acids, small molecules, and protein ligands to understand the structural basis of A3B-
mediated DNA mutagenesis and its inhibition to enable development of therapeutic compounds (Project 3).
These activities will be supported by Service Cores for administration (Core A), animal models of A3B-driven
breast cancer (Core B), computational chemistry and biophysics (Core C), and protein and antibody production
(Core D). Project 2 – Chemical Biology of DNA Deaminases in Breast Cancer will lead the chemical probe
discovery efforts by 1) synthesizing complex nucleic acid ligands for A3B to characterize how A3B
discriminates 2¢-deoxycytidine from other nucleotides and to understand which nucleic acid features enable
A3B to deaminate discrete DNA sequences, including its overall preference for binding DNA versus RNA; and
2) using complimentary technologies and approaches to develop first-in-class small molecule inhibitors of A3B
that will be used in mechanistic cellular assays of A3B-driven breast cancer mutation (Project 1), structural
biology studies to annotate A3B-ligand binding (Project 3), and therapeutic utility experiments in animal models
of breast cancer (Core B). Our studies will be enabled by critical collaborations involving computational ligand
design (Core C) and access to high-quality biological reagents for assays (Core D), and our advances will
position our novel compounds for future therapeutic development. Potent, selective chemical probes of A3B
with in vivo activity, as well as novel assays, are the major anticipated deliverables of Project 2. As such,
Project 2 will be the center of chemical innovation for the Program, accelerating all Projects and contributing to
the achievement of our overall research objectives.
项目 2 – 乳腺癌 DNA 脱氨酶的化学生物学
抽象的
APOBEC 酶是单链 DNA 胞嘧啶至尿嘧啶脱氨酶,通常可以保护细胞免受
然而,APOBEC3B (A3B) 与导致肿瘤的乳腺癌突变有关。
A3B 的进化并导致耐药性的发展,并最终导致治疗失败。
在超过一半的雌激素受体 (ER) 阳性乳腺肿瘤(最常见的类型)中过度表达
我们的计划表明,A3B 介导的肿瘤进化受到抑制。
改善 ER 阳性乳腺癌小鼠模型的治疗效果。
假设 A3B 抑制将阻止 ER 阳性乳腺癌中大部分新突变,
从而提高当前治疗的持久性并产生更好的总体结果。
假设我们的计划重点是了解乳腺癌细胞中 A3B 的生物学(项目 1);
开发创新的核酸探针,以分子方式表征 A3B 如何与 DNA 底物结合,并
抑制 A3B 催化的乳腺癌突变的小分子(项目 2)并产生 A3B X 射线;
核酸、小分子和蛋白质配体的结构,以了解 A3B- 的结构基础
介导的 DNA 突变及其抑制,以实现治疗化合物的开发(项目 3)。
这些活动将得到管理服务核心(核心 A)、A3B 驱动的动物模型的支持
乳腺癌(核心 B)、计算化学和生物物理学(核心 C)以及蛋白质和抗体生产
(核心 D)项目 2 – 乳腺癌 DNA 脱氨酶的化学生物学将主导化学探针。
通过1)合成A3B的复杂核酸配体来表征A3B的发现
将 2´-脱氧胞苷与其他核苷酸区分开来,并了解哪些核酸特征能够
A3B 使离散 DNA 序列脱氨基,包括其结合 DNA 与 RNA 的总体偏好;以及
2)利用互补技术和方法开发一流的A3B小分子抑制剂
将用于 A3B 驱动的乳腺癌突变的机制细胞测定(项目 1)、结构
注释 A3B-配体结合的生物学研究(项目 3)以及动物模型中的治疗效用实验
我们的研究将通过涉及计算配体的关键合作来实现。
设计(核心 C)和获得用于检测的高质量生物试剂(核心 D),我们的进步将
将我们的新型化合物用于未来治疗开发的有效、选择性化学探针。
具有体内活性以及新颖的检测方法是项目 2 的主要预期成果。因此,
项目 2 将成为该计划的化学创新中心,加速所有项目并为
我们总体研究目标的实现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel A Harki其他文献
Daniel A Harki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel A Harki', 18)}}的其他基金
Chemical Interrogation of Human DNA Cytosine Deaminases
人类 DNA 胞嘧啶脱氨酶的化学分析
- 批准号:
9264546 - 财政年份:2015
- 资助金额:
$ 36.09万 - 项目类别:
Chemical Interrogation of Human DNA Cytosine Deaminases
人类 DNA 胞嘧啶脱氨酶的化学研究
- 批准号:
9275136 - 财政年份:2015
- 资助金额:
$ 36.09万 - 项目类别:
Chemical Interrogation of Human DNA Cytosine Deaminases
人类 DNA 胞嘧啶脱氨酶的化学研究
- 批准号:
8884939 - 财政年份:2015
- 资助金额:
$ 36.09万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
An Inducible Swine Hepatocellular Carcinoma Platform for Enhanced Therapeutic Development
用于增强治疗开发的诱导猪肝细胞癌平台
- 批准号:
10758109 - 财政年份:2023
- 资助金额:
$ 36.09万 - 项目类别: