Chemical Interrogation of Human DNA Cytosine Deaminases
人类 DNA 胞嘧啶脱氨酶的化学研究
基本信息
- 批准号:9275136
- 负责人:
- 金额:$ 8.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:APOCEC3G geneActive SitesBinding SitesBiochemicalBiochemistryBiological AssayBiologyCatalysisCell Culture TechniquesCellsChemicalsClinicalCommunicable DiseasesComplementary DNAComputer SimulationCrystallographyCysteineCytosineCytosine deaminaseDNADNA BindingDataDeaminaseDevelopmentDrug DesignDrug resistanceEnzymesEvolutionFamilyFamily memberFoundationsFutureGeneticGenetsGenomeGenomicsGoalsGrowthHIVHIV-1HealthHeterogeneityHumanImmuneIndividualKnowledgeLeadLifeMalignant NeoplasmsMethodsModificationMutationNatural ImmunityNatureNuclearOutcomePatientsPharmaceutical ChemistryPharmaceutical PreparationsPlayProteinsPublishingReportingResearchRoleScientistSolventsSourceSulfhydryl CompoundsTestingTherapeuticUracilViralWorkZincanalogbasecancer genomechemical synthesiscombatcomputational chemistrydesigndrug developmentdrug discoveryhigh throughput screeninghuman DNAhuman diseaseinhibitor/antagonistinnovationmeetingsnovelnovel therapeuticsoverexpressionscaffoldsmall moleculesmall molecule inhibitortumor
项目摘要
DESCRIPTION (provided by applicant): APOBEC3 (A3) enzymes are DNA cytosine-to-uracil deaminases that target foreign DNA for destruction as part of innate immunity. A3 enzymes also play integral roles in multiple human diseases. APOBEC3G (A3G) sub-lethally deaminates HIV-1 cDNA during replication, providing a source of genomic mutation that contributes to viral evolution, adaptation, and drug resistance. APOBEC3B (A3B) is overexpressed in at least 6 human cancers, resulting in high levels of C-to-U genomic mutations that drive tumor evolution, heterogeneity, and drug resistance. Therefore, small molecule inhibitors of A3G and A3B may ultimately yield novel therapeutics for applications in infectious disease and cancer. The long-term goal of this project is to develop small molecule inhibitors of A3G and A3B as clinical drugs. The objective in this application is to develop potent chemical probes of A3G and A3B to enable mechanistic studies of both enzymes. High-throughput screening, chemical synthesis, and biochemical testing have been previously employed to identify covalent inhibitors of A3G. The central hypotheses of this application are: 1) Recently published A3G covalent inhibitors have identified a region of the enzyme that is susceptible to small molecule modulation, which can be exploited in probe design, and 2) Recently identified and unpublished non-covalent inhibitors of A3G and A3B can be optimized by computation-based methods to yield potent and selective chemical probes. The rationale for developing A3G and A3B small molecule probes is to enable mechanistic studies of their roles in HIV-1 restriction and cancer evolution, respectively. Furthermore, small molecule A3G and A3B probes will serve as launch points for future drug discovery efforts. The specific aims of this application are: 1) To develop bifunctiona and reversible covalent A3G inhibitors and 2) To develop non-covalent inhibitors of A3G and A3B. In the first aim, existing small molecules that covalently target A3G will be structurally modified to also engage the zinc atom of A3G, yielding bifunctional inhibitors that are predicted to be more potent than existing compounds. Additionally, existing covalent inhibitors of A3G will be modified to incorporate chemical moieties that can reversibly engage A3G Cys321, yielding molecules that are predicted to be less cross-reactive than the established covalent inhibitors, and therefore, will inhibit A3G in cell lysate and cells. In the second aim, computational modeling based on unpublished non-covalent A3G and A3B inhibitors will be used to guide the development of more selective and more potent non-covalent inhibitors of A3G and A3B. This approach is innovative because the small molecule inhibitors of A3G and A3B described in this proposal represent the first- in-class molecules known to target these enzymes. This work is also innovative due to the unique cross- disciplinary team of scientists, all with expertise in mutation research, that are focused on delivering novel chemical probes of A3 deaminases. The proposed research is significant because it expected to deliver fundamental chemical knowledge of A3 inhibition that will serve as the underpinning for future drugs.
描述(由申请人提供):APOBEC3 (A3) 酶是 DNA 胞嘧啶至尿嘧啶脱氨酶,作为先天免疫的一部分,对外来 DNA 进行破坏,并且在多种人类疾病中发挥着重要作用。在复制过程中使 HIV-1 cDNA 脱氨基,提供有助于病毒进化、适应和耐药性的基因组突变来源。 (A3B) 在至少 6 种人类癌症中过度表达,导致高水平的 C 到 U 基因组突变,从而驱动肿瘤进化、异质性和耐药性,因此,A3G 和 A3B 的小分子抑制剂可能最终产生新的治疗方法。该项目的长期目标是开发A3G和A3B的小分子抑制剂作为临床药物。该应用的目标是开发A3G和A3B的有效化学探针。 A3B 能够对两种酶进行机制研究,之前已采用高通量筛选、化学合成和生化测试来鉴定 A3G 的共价抑制剂。该应用的中心假设是:1) 最近发表的 A3G 共价抑制剂已鉴定出一个区域。易受小分子调节影响的酶,可用于探针设计,2) 最近鉴定和未发表的 A3G 和 A3B 非共价抑制剂可通过以下方法进行优化开发 A3G 和 A3B 小分子探针的基本原理是基于计算的方法来分别研究它们在 HIV-1 限制和癌症进化中的作用。作为未来药物发现工作的启动点,该申请的具体目标是:1) 开发双功能和可逆共价 A3G 抑制剂;2) 开发 A3G 的非共价抑制剂。第一个目标是对现有的共价靶向 A3G 的小分子进行结构修饰,使其也与 A3G 的锌原子结合,从而产生预计比现有的 A3G 化合物更有效的双功能抑制剂。将被修改以纳入可以可逆地接合 A3G Cys321 的化学部分,产生预计交叉反应性低于已建立的共价抑制剂的分子,因此,将抑制细胞裂解物和细胞中的 A3G 在第二个目标中,基于未发表的非共价 A3G 和 A3B 抑制剂的计算模型将用于指导开发更具选择性和更有效的 A3G 和 A3B 非共价抑制剂。创新性是因为本提案中描述的 A3G 和 A3B 小分子抑制剂代表了已知针对这些酶的一流分子。这项工作也具有创新性,因为独特的跨学科团队。科学家们都具有突变研究方面的专业知识,专注于提供 A3 脱氨酶的新型化学探针。这项拟议的研究意义重大,因为它有望提供 A3 抑制的基本化学知识,为未来的药物奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel A Harki其他文献
Daniel A Harki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel A Harki', 18)}}的其他基金
Chemical Interrogation of Human DNA Cytosine Deaminases
人类 DNA 胞嘧啶脱氨酶的化学分析
- 批准号:
9264546 - 财政年份:2015
- 资助金额:
$ 8.7万 - 项目类别:
Chemical Interrogation of Human DNA Cytosine Deaminases
人类 DNA 胞嘧啶脱氨酶的化学研究
- 批准号:
8884939 - 财政年份:2015
- 资助金额:
$ 8.7万 - 项目类别:
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 8.7万 - 项目类别:
Metalloenzyme binding affinity prediction with VM2
使用 VM2 预测金属酶结合亲和力
- 批准号:
10697593 - 财政年份:2023
- 资助金额:
$ 8.7万 - 项目类别:
Probing the Role of Integrator in Neuronal Function
探讨积分器在神经元功能中的作用
- 批准号:
10777205 - 财政年份:2023
- 资助金额:
$ 8.7万 - 项目类别:
Chemical tools to investigate chain-flipping in quorum signal synthases
研究群体信号合酶链翻转的化学工具
- 批准号:
10645548 - 财政年份:2023
- 资助金额:
$ 8.7万 - 项目类别:
Structure of GDAP1 bound to a product of lipid peroxidation
与脂质过氧化产物结合的 GDAP1 的结构
- 批准号:
10645396 - 财政年份:2023
- 资助金额:
$ 8.7万 - 项目类别: