Developing EPR tools for preclinical interrogation of redox regulation mechanisms contributing to acute lung injury
开发 EPR 工具,用于临床前询问导致急性肺损伤的氧化还原调节机制
基本信息
- 批准号:10214392
- 负责人:
- 金额:$ 40.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-22 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:Acute Lung InjuryAddressAdultAdult Respiratory Distress SyndromeAlveolarAntioxidantsAutomobile DrivingAutopsyBiologyBiopsyBleomycinBlood CirculationBreathingCOVID-19 pandemicCellsCellular StressChildClinicalClinical ResearchCritical IllnessDNADataDevelopmentDiseaseDisulfidesElectron Spin Resonance SpectroscopyElectronsEnvironmentFibrosisFluorescent ProbesFree RadicalsFutureGenerationsGenesGlutathioneGlutathione DisulfideGoalsGoldHomeostasisHumanHydroxylamineImageImaging technologyIncidenceIndividualInflammationLifeLinkLipidsLungLung diseasesMagnetic Resonance ImagingMeasurementMeasuresMethodologyMethodsMitochondriaMolecularMonitorMorbidity - disease rateMouse StrainsMusNitrogenNoiseOperative Surgical ProceduresOrganOrgan TransplantationOxidantsOxidation-ReductionOxidative StressOxygenPathogenesisPathway interactionsPeriodicityPre-Clinical ModelProcessProductionProteinsPulmonary FibrosisRadio WavesRegulationReportingResearchRouteSamplingScanningSignal TransductionSignaling MoleculeSiteSpin TrappingStructure of parenchyma of lungSulfhydryl CompoundsSuperoxide DismutaseSuperoxidesTestingTherapeuticTimeTissuesVariantVascular DiseasesVisualizationantioxidant enzymeantioxidant therapyautooxidationbaseeffective therapyend stage diseaseendophenotypeex vivo imagingextracellularhuman diseaseimagerimprovedimproved outcomein vivoinsightknock-downmortalitymouse modelnew technologynovelorgan injuryoverexpressionoxidationpre-clinicalresponse to injuryspectroscopic imagingtooltreatment response
项目摘要
PROJECT SUMMARY
Acute respiratory distress syndrome (ARDS), the most severe form of acute lung injury (ALI), is
a principal cause of life-threatening illness in both adults and children. Unfortunately, despite decades of
research in search of effective treatments, the high mortality of ARDS has remained largely unchanged,
requiring breakthroughs in the methodologies to assess individuals with ARDS to guide therapeutic strategies.
Oxidative stress is critical in the pathogenesis of ARDS (as well as numerous other human diseases);
however, the clinical utility of antioxidant therapies is complicated because reactive oxygen and nitrogen
species produced at low and controlled levels are also signaling molecules essential for cellular homeostasis
and adaptation to cellular stress through targeted specific redox-sensitive pathways. Based on these findings,
“oxidative stress” has been redefined from a simple imbalance in oxidants and antioxidants to also include a
disruption in redox signaling and control. This revised definition is driving improved tools and therapeutic
approaches in the field of Redox Biology; these advances provide new opportunities to understand and treat
the disruption of redox-regulated processes that contribute to pathogenesis of ARDS. One major barrier to the
study of dysregulated redox signaling in human ARDS is the lack of rigorous methodologies to precisely
determine the redox status of the lung in vivo. This proposal addresses this major gap by developing new
technology to measure the redox status of the acutely injured lung in vivo using electron
resonance
molecular
that
react
EPR
probes We hypothesize that advanced applications of Electron Paramagnetic
Resonance (EPR) spectroscopy to preclinical models using rapid scan in vivo EPR imaging will
provide novel insight into the time-course and localization of free radical production and redox status
in lung disease. We will use EPR spin probes that can differentiate between total cell and mitochondrial
superoxide as well as a novel spin probe that can detect the redox status of intracellular glutathione, providing
precise and specialized measures of the redox status in mice with different levels of oxidative stress. We
paramagnetic
(EPR) imaging spectroscopy is the gold-standard for the measurement of free radicals:
probes known as “spin traps” react with specific short-lived free radicals to form more stable radicals
can then be easily detected and quantified by the EPR spectrometer, while “spin probe” molecules that
with thiol species such as glutathione can report cellular thiol redox status. Importantly, like MRI, the
imaging spectrometer uses radio waves that readily penetrate tissue and enable visualization of the spin
within the mouse organs.
. EPR
boldly propose
assignment
essential,
of endophenotypes in ARDS and inform future clinical studies and therapeutic decisions.
that this will provide previously unattainable information that will guide the
项目概要
急性呼吸窘迫综合征 (ARDS) 是急性肺损伤 (ALI) 的最严重形式,
不幸的是,尽管几十年来,这是导致成人和儿童危及生命的疾病的主要原因。
寻找有效治疗方法的研究,ARDS的高死亡率基本保持不变,
需要在评估 ARDS 个体的方法上取得突破,以指导治疗策略。
氧化应激在 ARDS(以及许多其他人类疾病)的发病机制中至关重要;
然而,抗氧化疗法的临床应用很复杂,因为活性氧和氮
以低水平和受控水平产生的物种也是细胞稳态所必需的信号分子
基于这些发现,通过有针对性的特定氧化还原敏感途径来适应细胞应激。
“氧化应激”已从简单的氧化剂和抗氧化剂不平衡重新定义为还包括
这一修订后的定义正在推动工具和治疗方法的改进。
氧化还原生物学领域的方法;这些进展为理解和治疗提供了新的机会
氧化还原调节过程的破坏导致 ARDS 的发病机制之一。
对人类 ARDS 中氧化还原信号失调的研究缺乏精确的严格方法
该提案通过开发新的技术来解决这一主要差距。
利用电子测量体内急性损伤肺氧化还原状态的技术
谐振
分子
那
反应
EPR
探针我们采取了电子顺磁的先进应用
使用快速扫描体内 EPR 成像对临床前模型进行共振 (EPR) 光谱分析
为自由基产生和氧化还原状态的时间进程和定位提供新颖的见解
在肺部疾病中,我们将使用可以区分总细胞和线粒体的 EPR 自旋探针。
超氧化物以及一种新型自旋探针可以检测细胞内谷胱甘肽的氧化还原状态,提供
对具有不同氧化应激水平的小鼠的氧化还原状态进行精确和专门的测量。
顺磁的
(EPR) 成像光谱是自由基测量的黄金标准:
被称为“自旋陷阱”的探针与特定的短命自由基发生反应,形成更稳定的自由基
然后可以通过 EPR 光谱仪轻松检测和定量,而“自旋探针”分子
重要的是,与谷胱甘肽等硫醇种类可以报告细胞硫醇氧化还原状态,就像 MRI 一样。
成像光谱仪使用易于穿透组织并实现旋转可视化的无线电波
小鼠器官内。
.EPR
大胆提议
任务
基本的,
ARDS 的内表型并为未来的临床研究和治疗决策提供信息。
这将提供以前无法获得的信息来指导
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SANDRA S. EATON其他文献
SANDRA S. EATON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SANDRA S. EATON', 18)}}的其他基金
Developing EPR tools for preclinical interrogation of redox regulation mechanisms contributing to acute lung injury
开发 EPR 工具,用于临床前询问导致急性肺损伤的氧化还原调节机制
- 批准号:
10396627 - 财政年份:2021
- 资助金额:
$ 40.97万 - 项目类别:
INTERACTION OF SPIN LABELS WITH TRANSITION METALS
自旋标记与过渡金属的相互作用
- 批准号:
6658798 - 财政年份:2002
- 资助金额:
$ 40.97万 - 项目类别:
INTERACTION OF SPIN LABELS WITH TRANSITION METALS
自旋标记与过渡金属的相互作用
- 批准号:
6496826 - 财政年份:2001
- 资助金额:
$ 40.97万 - 项目类别:
INTERACTION OF SPIN LABELS WITH TRANSITION METALS
自旋标记与过渡金属的相互作用
- 批准号:
6353226 - 财政年份:2000
- 资助金额:
$ 40.97万 - 项目类别:
INTERACTION OF SPIN LABELS WITH TRANSITION METALS
自旋标记与过渡金属的相互作用
- 批准号:
6319954 - 财政年份:1999
- 资助金额:
$ 40.97万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 40.97万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 40.97万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 40.97万 - 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 40.97万 - 项目类别:
Uncover mechanisms underlying the development of chronic lung sequelae post COVID-19
揭示 COVID-19 后慢性肺部后遗症发生的机制
- 批准号:
10734747 - 财政年份:2023
- 资助金额:
$ 40.97万 - 项目类别: