Development and Application of a Novel Method to Study Histone Inheritance in Asymmetrically Dividing Cells
研究不对称分裂细胞中组蛋白遗传的新方法的开发和应用
基本信息
- 批准号:10388699
- 负责人:
- 金额:$ 6.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AgingBiologicalBiological ModelsCancerousCell Cycle ProgressionCell Differentiation processCell LineageCell NucleusCell divisionCell physiologyCellsChromatinClinicalClustered Regularly Interspaced Short Palindromic RepeatsCuesDNADNA MethylationDNA SequenceDetectionDeteriorationDevelopmentDevelopmental BiologyDiseaseDissectionDrosophila genusEpigenetic ProcessFemaleFluorescent in Situ HybridizationGangliaGene ExpressionGenetic VariationGenomeGenomicsGuide RNAHealthHistonesHomeostasisHumanInfertilityInheritance PatternsInheritedIntestinesIntrinsic factorKnowledgeLabelLightLocationMalignant NeoplasmsMethodologyMethodsMitosisMitoticMolecularMothersMusMuscular DystrophiesNormal CellOnset of illnessOrganellesOrganismPatternPhenotypePlayPost-Translational Protein ProcessingProcessProteinsRNARNA libraryRegulationResearchResolutionRoleS phaseSpermatocytesStructureTechnologyTestingTimeTissuesTransgenic OrganismsVariantWorkadult stem cellage relatedbasecancer cellcancer typecell agecell behaviorcell typedesignembryonic stem cellepigenetic memoryepigenetic regulationepigenomicsexperimental studygenetic informationgenomic locusgermline stem cellsin vivomalenerve stem cellneuroblastnovelprogenitorself-renewalstem cell differentiationstem cell homeostasisstem cell modelstem cellstissue degenerationtool
项目摘要
Proper development depends on asymmetric cell division (ACD), a process by which dividing stem cells
produce a renewed stem cell and a differentiating cell. Many intrinsic and extrinsic factors guiding ACD have
been found and characterized. Yet, the contribution of chromatin to cell-fate determination is poorly
understood. Previously, our lab discovered asymmetries in histone and histone post-translational modification
(hPTM) inheritance in Drosophila male germ cells. Further dissection of this process revealed it functions and
is regulated in three-steps: 1) histone asymmetry is established during S-phase; 2) histone asymmetry is
distinguished during M-phase; 3) the readout of the inherited asymmetric histones guides cell cycle
progression following mitotic exit. Interestingly, disruption of these asymmetries results in both stem cell loss
and overproliferation phenotypes, suggesting that asymmetric histone inheritance is an essential process in
tissue health. Further, deterioration of this process may be common among diseases including age-related
tissue degeneration and cancer. I hypothesize that asymmetric histone inheritance is a general mechanism
that plays a crucial role in stem cell homeostasis and cell-fate determination during development. However, our
ability to track histones and hPTMs at specific loci within single cells is severely limited at this time. Thus, we
are in urgent need of new tools to study the roles and consequences of asymmetric histone inheritance in
development, stem cell homeostasis, and cell-fate determination. In this proposal, I will 1) broaden our
understanding of pervasiveness, roles, and patterns of histone inheritance in asymmetrically dividing cells and
2) develop a novel method for labeling non-repetitive loci to track epigenomic features.
First, I will express histones tagged with the photoconvertible Dendra2 in Drosophila neuronal stem cell
lineages. Neuroblasts (NBs), their progenies ganglion mother cells (GMCs), and transit-amplifying intermediate
neuronal progenitors (INPs) are a well-studied stem cell model system. Following 405nm light induced
photoconversion, I will observe the inheritance patterns of old (red) versus new (green) histones in type I and II
NBs. These studies will 1) expand our knowledge on histone inheritance in ACD, and 2) reveal whether histone
inheritance patterns change as asymmetrically dividing cells age and lose potency (e.g. INPs).
Tracking epigenomic information at specific genomic locations has traditionally been performed using
FISH. However, the heat denaturation required for FISH is either partially or completely incompatible with
detection of DNA-associated proteins. To overcome this limitation, I will adapt Oligopaint technologies to
design guide RNA libraries for tethering dCas9 to specific, non-repetitive loci. This will allow me to track
histone and hPTM inheritance patterns at specific genomic loci with single-cell resolution.
These works will both enhance our understanding of the mechanisms underlying ACD and provide new
tools facilitating the detection of epigenomic alterations in research and clinical settings.
正确的发育取决于不对称细胞分裂(ACD),这是干细胞分裂的过程
产生更新的干细胞和分化细胞。许多引导 ACD 的内在和外在因素
被发现并表征。然而,染色质对细胞命运决定的贡献却很薄弱。
明白了。此前,我们实验室发现了组蛋白和组蛋白翻译后修饰的不对称性
(hPTM) 果蝇雄性生殖细胞的遗传。对这个过程的进一步剖析揭示了它的功能和
分三步调节:1) 在 S 期建立组蛋白不对称性; 2) 组蛋白不对称性是
在M期期间表现出色; 3)遗传性不对称组蛋白的读出指导细胞周期
有丝分裂退出后的进展。有趣的是,破坏这些不对称性会导致干细胞损失
和过度增殖表型,表明不对称组蛋白遗传是一个重要的过程
组织健康。此外,这一过程的恶化在包括与年龄相关的疾病中可能很常见
组织退化和癌症。我假设不对称组蛋白遗传是一种通用机制
这在发育过程中的干细胞稳态和细胞命运决定中起着至关重要的作用。然而,我们的
目前,追踪单细胞内特定位点的组蛋白和 hPTM 的能力受到严重限制。因此,我们
迫切需要新的工具来研究不对称组蛋白遗传的作用和后果
发育、干细胞稳态和细胞命运决定。在本提案中,我将 1) 扩大我们的范围
了解不对称分裂细胞中组蛋白遗传的普遍性、作用和模式
2)开发一种标记非重复基因座以追踪表观基因组特征的新方法。
首先,我将在果蝇神经元干细胞中表达带有光转换 Dendra2 标记的组蛋白
血统。神经母细胞 (NB)、其后代神经节母细胞 (GMC) 和转运放大中间体
神经祖细胞(INP)是一个经过充分研究的干细胞模型系统。 405nm光诱导后
光转换,我将观察 I 型和 II 型中旧(红色)组蛋白与新(绿色)组蛋白的遗传模式
注意。这些研究将 1) 扩展我们对 ACD 中组蛋白遗传的认识,2) 揭示组蛋白是否
遗传模式随着不对称分裂细胞的衰老和丧失效力(例如 INP)而改变。
传统上,跟踪特定基因组位置的表观基因组信息是使用
鱼。然而,FISH 所需的热变性部分或完全不兼容
DNA相关蛋白的检测。为了克服这个限制,我将采用 Oligopaint 技术
设计指南 RNA 文库,用于将 dCas9 束缚到特定的非重复基因座。这将使我能够跟踪
具有单细胞分辨率的特定基因组位点的组蛋白和 hPTM 遗传模式。
这些工作将增强我们对 ACD 基础机制的理解,并提供新的
促进研究和临床环境中表观基因组改变检测的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Thomas Palladino其他文献
Jason Thomas Palladino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Thomas Palladino', 18)}}的其他基金
Development and Application of a Novel Method to Study Histone Inheritance in Asymmetrically Dividing Cells
研究不对称分裂细胞中组蛋白遗传的新方法的开发和应用
- 批准号:
10709475 - 财政年份:2022
- 资助金额:
$ 6.76万 - 项目类别:
相似国自然基金
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于微生物群落代谢网络模型构建解析客家黄酒发酵中扣囊复膜酵母与乳酸菌的交互作用机制
- 批准号:32302029
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带森林动态植被与土壤微生物耦合模型构建与应用
- 批准号:42371032
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
基于生物三维打印的阿尔兹海默症炎性血脑屏障模型构建及β-淀粉样蛋白病变机制研究
- 批准号:52375295
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
具趋向性和非局部作用生物扩散模型的时空动力学研究
- 批准号:12301190
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Ultra-precision clinical imaging and detection of Alzheimers Disease using deep learning
使用深度学习进行超精密临床成像和阿尔茨海默病检测
- 批准号:
10643456 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
A multi-omic and integrative longitudinal evaluation of the role of lipid, antioxidant, and osmoprotectant metabolites in the genitourinary syndrome of menopause by race and ethnicity.
按种族和民族对脂质、抗氧化剂和渗透保护代谢物在更年期泌尿生殖综合征中的作用进行多组学和综合纵向评估。
- 批准号:
10643444 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
Inferring multi-scale dynamics underlying behavior in aging C. elegans
推断衰老线虫行为背后的多尺度动力学
- 批准号:
10638631 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别: