Machine learning approaches to predict Acetylcholinesterase inhibition
预测乙酰胆碱酯酶抑制的机器学习方法
基本信息
- 批准号:10378934
- 负责人:
- 金额:$ 25.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-10 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AcetylcholineAcetylcholinesteraseAcetylcholinesterase InhibitorsAddressAdjuvantAdverse effectsAffectAlgorithmsAmphibiaAppletAreaBayesian ModelingBehavioralBindingBiologicalCaliberCardiovascular systemCell physiologyCessation of lifeCognitiveCollaborationsComputer softwareConvulsionsDataData SetDatabasesEelsEnvironmentEnvironmental PollutionEnzymesEquilibriumExposure toFingerprintFishesFoodGoalsGraphHumanKnowledgeLacrimationLibrariesLifeLiteratureLungMachine LearningMissionModelingMucous body substanceMuscarinic Acetylcholine ReceptorMuscle fasciculationNeuraxisNeuromuscular JunctionNeuronsNeurotransmittersNicotinic ReceptorsOnline SystemsOrganOrganismOrganophosphorus CompoundsPeripheralPesticidesPharmaceutical PreparationsPharmacologic SubstancePhasePoisonPoisoningProductionPubMedReceiver Operating CharacteristicsResearchRespiratory distressScientistSeizuresSignaling MoleculeSkinSourceStatus EpilepticusStructureSynapsesTestingTimeToxic effectToxicologyTrainingTremorValidationWorkbasechemical propertycholinergiccholinergic synapsecomputing resourcesdata curationdata integrationdata modelingdrug discoveryexperiencefollow-uphigh throughput screeninginhibitormachine learning modelmachine learning pipelinemodel buildingmodel developmentmultiple datasetsnerve agentprototypepublic databasesaliva secretionscaffoldscreeningsmall moleculesoftware developmenttoolwound healing
项目摘要
Summary
Acetylcholine (Ach) is a neurotransmitter at neuromuscular junctions and synapses in the autonomic and central
nervous systems. It also functions as a signaling molecule in non-neuronal contexts related to cellular functions,
such as proliferation and differentiation, as well as performing organ functions, like wound healing in skin or
mucus production in lungs. Organophosphorus (OP) are one of the most common causes of poisoning
worldwide. There are nearly 3 million poisonings per year resulting in three hundred thousand deaths of these
approximately 8000 are in the USA. Because of their unique chemical properties, OPs bind to
acetylcholinesterase (AChE), rendering the enzyme incapable of hydrolyzing ACh in the cholinergic synapses
and neuromuscular junctions. Subsequent accumulation of ACh leads to overstimulation of the affected neurons
acting through muscarinic and nicotinic receptors. The peripheral effects of excess systemic ACh include
observable toxic signs (e.g., miosis, lacrimation, salivation, fasciculation, tremors and convulsions), as well as
life- threatening cardiovascular and respiratory distress. Simultaneous progression of the cholinergic crisis within
the central nervous system ultimately induces a state of unremitting seizure known as status epilepticus.
Unmitigated OP-induced SE is associated with wide- spread neuronal damage, and concomitant cognitive and
behavioral deficits. Besides the effects directly in humans, OPs can reach humans indirectly via expose to
various types of organisms that have themselves been contaminated in the environment. Some of the adverse
effects of pesticides on non-target organisms such as fish, amphibians and humans have also occurred as a
result of biomagnifications of the toxic compounds. What is missing across public “Structure Activity/toxicity
Relationship” databases are accessible machine learning models for scientists to use to extract knowledge from
the small molecule data that is accumulating. We would propose predicting AChE inhibition from structure of the
molecule alone. Our mission is therefore to make the various public datasets much more readily accessible to
machine learning modeling by providing the underlying datasets ready to model as well as apply prebuilt models
of our own. This project therefore covers automated curation, data integration and will build a research pipeline
for machine learning model development for AChE inhibition. We now propose auto-curation of public AChE
databases which use predominantly small molecule / biological activity data (such as IC50, Ki, EC50, or % inhibition
etc), sorted by target and species. We will develop software to autocurate data, build machine learning models
and identify potential molecules that inhibit AChE from human and other species in order to predict poisoning
and possible environmental contamination. We will also validate these models with literature data outside of the
training sets and understand the applicability domain of these models to other classes of molecules besides
OPs. Our ultimate goal will be to provide software and models to predict AChE inhibition which will be a
commercial product.
概括
乙酰胆碱 (Ach) 是自主神经和中枢神经肌肉接头和突触的神经递质
它还在与细胞功能相关的非神经元环境中充当信号分子,
例如增殖和分化,以及执行器官功能,例如皮肤或伤口的愈合
肺部粘液产生是最常见的中毒原因之一。
全世界每年有近 300 万人中毒,导致 30 万人死亡。
大约 8000 种在美国,由于其独特的化学特性,OP 可以与
乙酰胆碱酯酶 (AChE),使该酶无法水解胆碱能突触中的 ACh
乙酰胆碱的后续积累会导致受影响神经元的过度刺激。
通过毒蕈碱和烟碱受体发挥作用。 过量的全身性乙酰胆碱的外周效应包括
可观察到的毒性体征(例如瞳孔缩小、流泪、流涎、肌束颤动、震颤和抽搐),以及
危及生命的心血管和呼吸窘迫同时进展。
中枢神经系统最终会导致一种持续癫痫发作的状态,称为癫痫持续状态。
OP 诱发的 SE 与广泛的神经损伤以及伴随的认知和认知障碍有关。
除了直接影响人类外,有机磷农药还可以通过暴露于环境中间接影响人类。
环境中本身受到污染的各种类型的生物体。
农药对鱼类、两栖动物和人类等非目标生物体的影响也发生在
有毒化合物生物放大的结果。公共“结构活性/毒性”中缺少什么。
“关系”数据库是可访问的机器学习模型,供科学家用来从中提取知识
我们建议根据正在积累的小分子数据来预测 AChE 的抑制作用。
因此,我们的使命是让各种公共数据集更容易被访问。
通过提供准备建模的底层数据集以及应用预构建模型来进行机器学习建模
因此,这个项目涵盖了自动化管理、数据集成,并将建立一个研究渠道。
用于 AChE 抑制的机器学习模型开发 我们现在建议自动管理公共 AChE。
主要使用小分子/生物活性数据(例如 IC50、Ki、EC50 或抑制百分比)的数据库
等),按目标和物种排序。我们将开发软件来自动管理数据,构建机器学习模型。
并识别抑制人类和其他物种的 AChE 的潜在分子,以预测中毒情况
我们还将使用外部文献数据来验证这些模型。
训练集并了解这些模型对其他类别分子的适用范围
我们的最终目标是提供软件和模型来预测 AChE 抑制,这将是一个
商业产品。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SEAN EKINS其他文献
SEAN EKINS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SEAN EKINS', 18)}}的其他基金
Preclinical development of a Nipah Virus inhibitor
尼帕病毒抑制剂的临床前开发
- 批准号:
10761349 - 财政年份:2023
- 资助金额:
$ 25.64万 - 项目类别:
New therapeutic approaches to identifying molecules for opioid abuse treatment
识别阿片类药物滥用分子的新治疗方法
- 批准号:
10385998 - 财政年份:2022
- 资助金额:
$ 25.64万 - 项目类别:
MegaTox for analyzing and visualizing data across different screening systems
MegaTox 用于分析和可视化不同筛选系统的数据
- 批准号:
10094026 - 财政年份:2020
- 资助金额:
$ 25.64万 - 项目类别:
MegaTox for analyzing and visualizing data across different screening systems
MegaTox 用于分析和可视化不同筛查系统的数据
- 批准号:
10674729 - 财政年份:2019
- 资助金额:
$ 25.64万 - 项目类别:
MegaTox for analyzing and visualizing data across different screening systems
MegaTox 用于分析和可视化不同筛选系统的数据
- 批准号:
10470050 - 财政年份:2019
- 资助金额:
$ 25.64万 - 项目类别:
MegaTox for analyzing and visualizing data across different screening systems
MegaTox 用于分析和可视化不同筛选系统的数据
- 批准号:
10470050 - 财政年份:2019
- 资助金额:
$ 25.64万 - 项目类别:
MegaTrans – human transporter machine learning models
MegaTrans — 人类运输机机器学习模型
- 批准号:
9768844 - 财政年份:2019
- 资助金额:
$ 25.64万 - 项目类别:
MegaPredict for predicting natural product uses and their drug interactions
MegaPredict 用于预测天然产物用途及其药物相互作用
- 批准号:
10055938 - 财政年份:2019
- 资助金额:
$ 25.64万 - 项目类别:
Manufacture of an intracerebroventricular Enzyme Replacement Therapy for CLN1 Batten Disease
CLN1巴顿病脑室内酶替代疗法的研制
- 批准号:
10641950 - 财政年份:2018
- 资助金额:
$ 25.64万 - 项目类别:
Manufacture of an intracerebroventricular Enzyme Replacement Therapy for CLN1 Batten Disease
CLN1巴顿病脑室内酶替代疗法的研制
- 批准号:
10483470 - 财政年份:2018
- 资助金额:
$ 25.64万 - 项目类别:
相似国自然基金
蝙蝠葛中作用于AChE和Aβ双靶点的抗阿尔茨海默病活性成分及作用机制研究
- 批准号:31700305
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
蛇足石杉内生真菌中结构多样性AChEI的发现及构效关系
- 批准号:81760649
- 批准年份:2017
- 资助金额:34.0 万元
- 项目类别:地区科学基金项目
西沙珊瑚共附生真菌表观遗传修饰及新颖结构活性次级代谢产物发现
- 批准号:81673350
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
高选择性昆虫AP型乙酰胆碱酯酶抑制剂的设计及合成
- 批准号:21562022
- 批准年份:2015
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
四株云南特色中药内生菌中治疗阿尔茨海默病的新型多靶向乙酰胆碱酯酶抑制剂的发现
- 批准号:81560571
- 批准年份:2015
- 资助金额:35.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Uncharted Territory: Mapping and Manipulating Cholinergic Basal Forebrain Activity in a Mouse Model of Alzheimer's Disease
未知领域:绘制和操纵阿尔茨海默病小鼠模型中的胆碱能基础前脑活动
- 批准号:
10537906 - 财政年份:2023
- 资助金额:
$ 25.64万 - 项目类别:
Novel oxime antidotes for an organophosphate insecticide requiring bioactivation
用于需要生物活化的有机磷杀虫剂的新型肟解毒剂
- 批准号:
10629574 - 财政年份:2023
- 资助金额:
$ 25.64万 - 项目类别:
Core A: Analytical and Medicinal Chemistry Core
核心 A:分析和药物化学核心
- 批准号:
10684074 - 财政年份:2022
- 资助金额:
$ 25.64万 - 项目类别:
Recovery of Synaptic Dysfunction and Memory Loss in Alzheimer's Disease by Selective Co-Activation of Nicotinic Acetylcholine Receptors
通过烟碱乙酰胆碱受体的选择性共激活恢复阿尔茨海默病的突触功能障碍和记忆丧失
- 批准号:
10303598 - 财政年份:2021
- 资助金额:
$ 25.64万 - 项目类别:
Optimization of Substituted Phenoxyalkyl Pyridinium Oximes as Therapies for Organophosphate Poisoning
取代苯氧基烷基吡啶鎓肟治疗有机磷中毒的优化
- 批准号:
10281742 - 财政年份:2021
- 资助金额:
$ 25.64万 - 项目类别: