Large scale clinical and economic impact analysis of potentially malignant incidental findings in radiology reports
放射学报告中潜在恶性偶然发现的大规模临床和经济影响分析
基本信息
- 批准号:10363655
- 负责人:
- 金额:$ 63.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-03 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AbdomenActive LearningAddressAdherenceAdrenal GlandsAgeAgreementAngiographyAnxietyCaregiversCategoriesCessation of lifeChestClinicalClinical DataClinical Practice GuidelineCodeCommunicationCommunitiesDataData SetDatabasesDevelopmentDiagnosisDiseaseDocumentationEconomicsEnsureEpidemicExpenditureFundingFutureGoldGrowthGuidelinesHealthHealthcareHospitalsImageImaging technologyIncidental FindingsInstitutesInterdisciplinary StudyInvestigationKidneyLeadLinkLiverLungLung noduleMachine LearningMagnetic Resonance ImagingMalignant - descriptorMalignant NeoplasmsMedical InformaticsMedical centerMethodsModelingModernizationNatural Language ProcessingOncologyOrganOutcomeOutcomes ResearchPancreasPancreatic CystPatient NoncompliancePatient riskPatientsPerformancePrevalencePulmonary EmbolismRadiation exposureRadiology SpecialtyRecommendationReportingResearchResearch Project GrantsRiskRisk FactorsRunningScanningSemanticsServicesTechnologyTestingTextThyroid GlandThyroid NoduleTrainingUniversitiesWashingtonbasecancer carecancer diagnosiscancer riskclinical databasecohortcomorbiditycostdata repositoryeconomic evaluationeconomic impactfollow-uphealth care deliveryhealth care service organizationhealth economicsimprovedmachine learning methodmortalitynovelopen sourceovertreatmentpatient populationradiological imagingradiologistrepositorystructured datasurveillance imagingsystematic reviewtumor
项目摘要
Abstract
Unexpected findings, or incidentalomas, are increasing dramatically with the growth in the use of imaging
technology within healthcare organizations. Incidentalomas may indicate significant health problems, such as
malignancy in the medium or long term. However, they also may lead to overinvestigation, unnecessary
radiation exposure, overtreatment, substantial downstream expenditures, and patient anxiety. Several
systematic reviews have explored the prevalence and outcomes of incidentalomas. These studies used
inconsistent and often inappropriate synthesis methods, commonly only focusing on one imaging scan or
organ in a very limited number of patients. As a result, there is need for large-scale study of incidentalomas
that can inform their follow up and guide efforts to optimize health outcomes. To address this need, we
propose to build natural language processing (NLP) approaches to identify cancer-related incidentalomas
reported in radiology reports (Aim 1) and to create the first large-scale incidentaloma database covering over
half-a-million patients (Aim 2). Our research dataset will contain radiology reports, clinical notes containing
imaging orders, as well as structured data such as demographic information (e.g., age) and diagnoses codes
of patients who received radiologic imaging tests in University of Washington Medical Center (UWMC),
Harborview Medical Center (HMC), Seattle Cancer Care Alliance (SCCA), and Northwest Hospital and Medical
Center (NWMC) between 2007-2019. Our patient population will be linked to Hutchinson Institute for Cancer
Outcomes Research (HICOR) data repository for detailed cancer outcomes and claims data. The created
database will be used for clinical and economic analysis of incidentalomas (Aim 3). We will (1) evaluate the
concordance between radiologists' documentation of incidentaloma follow-up and established clinical
guidelines for thyroid, lung, adrenal, kidney, liver, and pancreas incidentalomas, (2) determine risk of
subsequent cancer diagnosis and median survival for each category of incidentaloma, and (3) determine the
incremental cost associated with follow-up imaging in patients with incidentalomas. All models and their
implementations produced during the execution of this project will be shared with the community as open
source. Additionally, the de-identified incidentaloma database will be made available to the research
community under a data use agreement. By identifying risk factors for cancer diagnosis and death for common
incidental findings, we will be able to provide critical information for future clinical practice guideline
development and appropriate use criteria. We assembled a highly interdisciplinary team of experts in NLP,
medical informatics, radiology, oncology, health outcomes, and health economics to ensure the successful
completion of the proposed project.
抽象的
随着成像技术使用的增长,意外发现或偶发瘤正在急剧增加
医疗保健组织内的技术。偶发瘤可能预示着严重的健康问题,例如
中期或长期的恶性肿瘤。然而,它们也可能导致过度调查、不必要的
辐射暴露、过度治疗、大量下游支出和患者焦虑。一些
系统评价探讨了偶发瘤的患病率和结果。这些研究使用
不一致且常常不合适的合成方法,通常只关注一次成像扫描或
器官数量非常有限。因此,需要对偶发瘤进行大规模研究
这可以为他们的后续行动提供信息并指导优化健康结果的努力。为了满足这一需求,我们
提议建立自然语言处理(NLP)方法来识别与癌症相关的偶发瘤
在放射学报告中报告(目标 1),并创建第一个涵盖超过
50 万患者(目标 2)。我们的研究数据集将包含放射学报告、临床记录,其中包括
成像订单以及结构化数据,例如人口统计信息(例如年龄)和诊断代码
在华盛顿大学医学中心 (UWMC) 接受放射影像检查的患者,
Harborview 医疗中心 (HMC)、西雅图癌症护理联盟 (SCCA) 以及西北医院和医疗中心
中心 (NWMC) 2007-2019 年。我们的患者群体将与哈钦森癌症研究所联系起来
结果研究 (HICOR) 数据存储库,提供详细的癌症结果和索赔数据。所创建的
数据库将用于偶发瘤的临床和经济分析(目标 3)。我们将 (1) 评估
放射科医生对偶发瘤随访的记录与已建立的临床数据之间的一致性
甲状腺、肺、肾上腺、肾、肝和胰腺偶发瘤指南,(2) 确定以下疾病的风险:
随后的癌症诊断和每种偶发瘤类别的中位生存期,以及 (3) 确定
与偶发瘤患者的随访成像相关的增量成本。所有型号及其
该项目执行期间产生的实现将作为开放的方式与社区共享
来源。此外,去识别化的偶发瘤数据库将可供研究使用
数据使用协议下的社区。通过识别癌症诊断和常见死亡的危险因素
偶然的发现,我们将能够为未来的临床实践指南提供关键信息
开发和适当使用标准。我们组建了一支高度跨学科的 NLP 专家团队,
医学信息学、放射学、肿瘤学、健康结果和卫生经济学,以确保成功
完成拟议项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Gunn其他文献
Martin Gunn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Gunn', 18)}}的其他基金
Large scale clinical and economic impact analysis of potentially malignant incidental findings in radiology reports
放射学报告中潜在恶性偶然发现的大规模临床和经济影响分析
- 批准号:
10116614 - 财政年份:2021
- 资助金额:
$ 63.64万 - 项目类别:
Large scale clinical and economic impact analysis of potentially malignant incidental findings in radiology reports
放射学报告中潜在恶性偶然发现的大规模临床和经济影响分析
- 批准号:
10589761 - 财政年份:2021
- 资助金额:
$ 63.64万 - 项目类别:
相似国自然基金
基于共识主动性学习的城市电动汽车充电、行驶行为与交通网—配电网协同控制策略研究
- 批准号:62363022
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于主动迁移学习的SAR图像场景目标联合识别方法研究
- 批准号:62301250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向医学图像处理任务的主动学习新技术研究
- 批准号:82372097
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
量子点光学膜的原位动态高光谱监测与主动学习优化
- 批准号:22305015
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
基于主动统计迁移学习的电动汽车传动系统关键部件智能故障诊断研究
- 批准号:52305109
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
$ 63.64万 - 项目类别:
Large scale clinical and economic impact analysis of potentially malignant incidental findings in radiology reports
放射学报告中潜在恶性偶然发现的大规模临床和经济影响分析
- 批准号:
10116614 - 财政年份:2021
- 资助金额:
$ 63.64万 - 项目类别:
Large scale clinical and economic impact analysis of potentially malignant incidental findings in radiology reports
放射学报告中潜在恶性偶然发现的大规模临床和经济影响分析
- 批准号:
10589761 - 财政年份:2021
- 资助金额:
$ 63.64万 - 项目类别: