Augmentation of Tissue Perfusion with Ultrasound-mediated Cavitation
用超声介导的空化增强组织灌注
基本信息
- 批准号:10188594
- 负责人:
- 金额:$ 77.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-12 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D ultrasoundAcousticsAcuteAddressAdenosineAdenosine A2B ReceptorAffectAgeAnimal ModelAntiinflammatory EffectAreaAtherosclerosisAwardBlood VesselsBlood flowCaliberCardiovascular DiseasesCathetersChronicChronic DiseaseClinical TrialsClinical Trials DesignCoagulation ProcessComplicationContrast MediaConvectionCoronary ArteriosclerosisCoronary arteryCytolysisDevelopmentDiabetes MellitusDiagnostic ImagingDiffuseDiseaseDistalDoseElementsEncapsulatedEndothelial CellsEndotheliumErythrocytesFoundationsFrequenciesFundingGene-ModifiedGrantHealth Care CostsHeartHeart failureHumanHuman BiologyHyperlipidemiaInfarctionInflammationIschemiaIsolated limb perfusionKnowledgeLeft Ventricular DysfunctionLegLeg UlcerLimb structureLungMapsMediatingMediator of activation proteinMethodsMicrobubblesMicrocirculationModelingMorbidity - disease rateMotionMusMuscleMuscle relaxation phaseMyocardial IschemiaMyocardial perfusionMyocardiumPathway interactionsPatientsPerfusionPeripheralPeripheral arterial diseasePhysiologic pulsePilot ProjectsPre-Clinical ModelPrimatesProstaglandinsProtocols documentationPulmonary EmbolismPulmonary Vascular ResistanceReceptor SignalingRegional PerfusionReperfusion TherapyRestRiskRisk FactorsRoleSchemeSignal TransductionSkeletal MuscleSmooth MuscleSyndromeSystemTechniquesTestingTherapeuticThrombosisTissue PreservationTissue ViabilityTissuesUltrasonic TherapyUltrasonographyUnited StatesVascular DiseasesVascular resistanceVasodilationVasospasmacute coronary syndromeatherosclerosis riskbaseclinical diagnosticsclinical effectcontrast enhancedcritical limb Ischemiadesignfrailtyimprovedinhibitor/antagonistlimb ischemiamortalitymouse modelnecrotic tissuenonhuman primatenovelnovel therapeutic interventionpreconditioningpressurepreventreceptorsexthromboticvolunteerwound healing
项目摘要
SUMMARY
Ultrasound (US) is used for a variety of therapeutic applications. Over a range of different frequencies and
powers, US has been shown to produce to produce modest increases in arterial diameter and tissue perfusion
in animal models of limb and myocardial ischemia. In the initial funding period for this award, we described how
the combination of US with microbubble (MB) contrast agents that undergo inertial cavitation during high-power
contrast-enhanced US (CEU) produces much greater augmentation of limb skeletal muscle perfusion (up to
10-fold) than US alone. Brief CEU cavitation protocols were found to reverse limb ischemia for >24 hrs in
animal models, and a clinical trial in patients with peripheral artery disease (PAD) confirmed that MB cavitation
increases limb perfusion by several fold. In the course of our studies, optimal conditions for these bioeffects
were investigated which mandated us to design novel US pulse schemes and 3-D exposure capability. From a
mechanistic standpoint, we carefully mapped pathways responsible for cavitation-induced flow augmentation
which rely on shear-mediated ATP release from endothelial cells and erythrocytes, with secondary purinergic
vasodilation through downstream mediators (NO, prostaglandins, adenosine). Knowledge of the optimal
conditions and mechanistic underpinnings is critical for our current efforts to apply cavitation and activation of
ATP channels to treat ischemic disease by augmenting flow or by other potentially beneficial anti-thrombotic
and anti-inflammatory effects of purinergic signaling. The overall aim of this renewal is to leverage knowledge
from the first funding period in order to explore the therapeutic role of cavitation and non-cavitation US for
acute and chronic ischemic syndromes. In Aim 1 preclinical models will be used to determine whether limb
flow-augmentation from MB cavitation using previously-optimized pulse schemes can: (a) prevent tissue
necrosis in acute ischemia, with a particular focus on the effect of clinical variables (age, sex, hyperlipidemia,
diabetes), and (b) improve wound healing and limb function in chronic disease. The functional role of purinergic
vascular signaling will be evaluated by using inhibitor strategies or gene--modified models. In Aim 2 we will
determine whether MB cavitation directly augments myocardial perfusion in acute MI using murine models that
allow us to manipulate purinergic pathways, and in primate models that more closely resemble human biology.
We will also study how US-mediated ATP release has the potential to mitigate inflammation, and microvascular
thrombosis upon reperfusion. In Aim 3 we will test whether US energy from multi-element high-power intra-
arterial catheters increases downstream perfusion through shear-mediated purinergic pathways. This Aim is
based on evidence that therapeutic US catheters used in patients with pulmonary embolism can reduce
pulmonary vascular resistance even without clot lysis. Our proposal represents the translational steps for
development of non-invasive therapies for acute and chronic vascular diseases and will form the basis for the
design of clinical trials that we plan to initiate as the key unsolved issues are addressed.
概括
超声波(美国)用于多种治疗应用。在一系列不同的频率和
美国已被证明可以适度增加动脉直径和组织灌注
在肢体和心肌缺血的动物模型中。在该奖项的初始资助期间,我们描述了如何
US 与微泡 (MB) 造影剂的组合,在高功率期间经历惯性空化
对比增强超声 (CEU) 可以更大程度地增强肢体骨骼肌灌注(高达
10 倍)比仅美国就高。研究发现,简短的 CEU 空化方案可逆转肢体缺血 >24 小时
动物模型和外周动脉疾病 (PAD) 患者的临床试验证实,MB 空化
使肢体灌注增加数倍。在我们的研究过程中,这些生物效应的最佳条件
进行了调查,要求我们设计新颖的 US 脉冲方案和 3D 曝光能力。来自一个
从机械的角度来看,我们仔细绘制了导致空化引起的流动增强的路径
依赖于内皮细胞和红细胞剪切介导的 ATP 释放,具有次级嘌呤能
通过下游介质(NO、前列腺素、腺苷)舒张血管。最优知识
条件和机械基础对于我们当前应用空化和激活的努力至关重要
ATP 通道通过增加血流或其他潜在有益的抗血栓药物来治疗缺血性疾病
和嘌呤能信号的抗炎作用。此次更新的总体目标是利用知识
从第一个资助期开始,为了探索空化和非空化超声的治疗作用
急性和慢性缺血综合征。在目标 1 中,将使用临床前模型来确定肢体是否
使用先前优化的脉冲方案通过 MB 空化增强流量可以: (a) 防止组织
急性缺血坏死,特别关注临床变量(年龄、性别、高脂血症、
糖尿病),以及(b)改善慢性疾病的伤口愈合和肢体功能。嘌呤能的功能作用
将通过使用抑制剂策略或基因修饰模型来评估血管信号传导。在目标 2 中,我们将
使用小鼠模型确定 MB 空化是否直接增加急性 MI 中的心肌灌注
使我们能够在更接近人类生物学的灵长类动物模型中操纵嘌呤能途径。
我们还将研究 US 介导的 ATP 释放如何具有减轻炎症和微血管的潜力
再灌注时血栓形成。在目标 3 中,我们将测试美国能源是否来自多元素高功率内部
动脉导管通过剪切介导的嘌呤能途径增加下游灌注。这个目标是
基于证据表明,用于肺栓塞患者的治疗性美国导管可以减少
即使没有血栓溶解,肺血管阻力也会增加。我们的建议代表了转化步骤
开发针对急性和慢性血管疾病的非侵入性疗法,并将成为以下领域的基础:
我们计划在解决关键的未解决问题后启动临床试验的设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan R Lindner其他文献
Requisite Role of Kv1.5 Channels in Coronary Metabolic Dilation This Manuscript Was Sent to Jeanne M. Nerbonne, Consulting Editor, for Review by Expert Referees, Editorial Decision, and Final Disposition
Kv1.5 通道在冠状动脉代谢扩张中的必要作用本手稿已发送给顾问编辑 Jeanne M. Nerbonne,供专家审稿人审阅、编辑决定和最终处理
- DOI:
10.1016/j.semarthrit.2016.05.015 - 发表时间:
2017-02-01 - 期刊:
- 影响因子:5
- 作者:
Vahagn Ohanyan;L. Yin;R. Bardakjian;Christopher L. Kolz;M. Enrick;Tatevik Hakobyan;John Kmetz;Ian N Bratz;Jordan Luli;M. Nagane;Nadeem Khan;H. Hou;P. Kuppusamy;Jacqueline Graham;Frances Kwan Fu;D. Janota;M. Oyewumi;Suzanna J. Logan;Jonathan R Lindner;W. Chilian - 通讯作者:
W. Chilian
Jonathan R Lindner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan R Lindner', 18)}}的其他基金
Advanced Non-invasive Imaging in the Investigation of Aortic Stenosis Pathobiology
先进的无创成像在主动脉瓣狭窄病理学研究中的应用
- 批准号:
10522099 - 财政年份:2022
- 资助金额:
$ 77.72万 - 项目类别:
Advanced Non-invasive Imaging in the Investigation of Aortic Stenosis Pathobiology
先进的无创成像在主动脉瓣狭窄病理学研究中的应用
- 批准号:
10522099 - 财政年份:2022
- 资助金额:
$ 77.72万 - 项目类别:
Advanced Non-invasive Imaging in the Investigation of Aortic Stenosis Pathobiology
主动脉瓣狭窄病理学研究中的先进无创成像
- 批准号:
10693935 - 财政年份:2022
- 资助金额:
$ 77.72万 - 项目类别:
Augmentation of Tissue Perfusion with Ultrasound-mediated Cavitation
用超声介导的空化增强组织灌注
- 批准号:
10650238 - 财政年份:2016
- 资助金额:
$ 77.72万 - 项目类别:
Augmentation of Tissue Perfusion in PAD with Ultrasound-mediated Cavitation
超声介导的空化增强 PAD 中的组织灌注
- 批准号:
9005245 - 财政年份:2016
- 资助金额:
$ 77.72万 - 项目类别:
Augmentation of Tissue Perfusion in PAD with Ultrasound-mediated Cavitation
超声介导的空化增强 PAD 中的组织灌注
- 批准号:
9258481 - 财政年份:2016
- 资助金额:
$ 77.72万 - 项目类别:
Augmentation of Tissue Perfusion with Ultrasound-mediated Cavitation
用超声介导的空化增强组织灌注
- 批准号:
10592406 - 财政年份:2016
- 资助金额:
$ 77.72万 - 项目类别:
Augmentation of Tissue Perfusion with Ultrasound-mediated Cavitation
用超声介导的空化增强组织灌注
- 批准号:
10379090 - 财政年份:2016
- 资助金额:
$ 77.72万 - 项目类别:
CONTRAST ULTRASOUND ASSESSMENT OF MICROVASCULAR FUNCTION IN INSULIN RESISTANT
超声造影对胰岛素抵抗患者微血管功能的评估
- 批准号:
8357883 - 财政年份:2011
- 资助金额:
$ 77.72万 - 项目类别:
MOLECULAR IMAGING OF INFLAMMATION IN ATHEROSCLEROSIS
动脉粥样硬化炎症的分子成像
- 批准号:
8357882 - 财政年份:2011
- 资助金额:
$ 77.72万 - 项目类别:
相似海外基金
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 77.72万 - 项目类别:
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10587466 - 财政年份:2022
- 资助金额:
$ 77.72万 - 项目类别:
Wearable Electrostrictive Row-Column Ultrasound Arrays for Longitudinal Echocardiography
用于纵向超声心动图的可穿戴电致伸缩行列超声阵列
- 批准号:
10354880 - 财政年份:2022
- 资助金额:
$ 77.72万 - 项目类别:
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10708132 - 财政年份:2022
- 资助金额:
$ 77.72万 - 项目类别:
Wearable Electrostrictive Row-Column Ultrasound Arrays for Longitudinal Echocardiography
用于纵向超声心动图的可穿戴电致伸缩行列超声阵列
- 批准号:
10610780 - 财政年份:2022
- 资助金额:
$ 77.72万 - 项目类别: