Cell Endoscopy with Nanowire Probe
使用纳米线探针的细胞内窥镜检查
基本信息
- 批准号:7627970
- 负责人:
- 金额:$ 17.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-05 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalBiological ProcessCaliberCell physiologyCellsCellular biologyChemicalsDetectionEndoscopyEnsureEnvironmentExploratory/Developmental GrantFrequenciesGrowthImageIndividualLifeLiquid substanceMammalian CellMeasuresMethodsMicroscopeMicroscopyMonitorNanostructuresNatureOpticsOutputPhasePhysiologicalPhysiological ProcessesPositioning AttributePrincipal InvestigatorPropertyProteinsRefractive IndicesResearchResolutionScanningSchemeSignal PathwaySpottingsSystems IntegrationTestingYangbasecellular imagingflexibilityimage processingimaging probeimprovedin vivoindexingnanometernanowirenovelperformance testsphotonicsprogramsprototype
项目摘要
DESCRIPTION (provided by applicant): In this R21 program, we propose to develop a highly-integrated and highly-sensitive nanowire probe platform for single cell endoscopy. At the center of this platform lies the integrated flexible nanowire on the tip of a near- field scanning optical microscopy (NSOM) probe. This program will be built upon our extensive expertise in nanostructure synthesis/assembly, systems integration and nanowire based photonics. Our extensive capabilities and expertise will put us in a unique position to achieve potential breakthroughs and open up new possibilities in single cell imaging and probing. Developing of such flexible nanowire probes would enable us to monitor in-vivo biological processes within single living cells and will greatly improve our fundamental understanding of cell functions, intracellular physiological processes, cellular signal pathway, and thereby revolutionalizes cell biology. We will successfully develop a prototype for NSOM-nanowire probe and demonstrate its proof-of-principle applications for intracellular imaging and probing. We will develop and optimize strategies to assemble these cell endoscopy nanowire probes, i.e., direct nanomanipulation and attachment of nanowires onto NSOM probes. We will test two types of nanowires as sub-wavelength optical waveguides for this study. One is conventional dielectric materials such as SnO2, the other one being materials with strong non-linear optical properties, such as KNbO3. There are several key features associated with these proposed cell endoscopy probes: 1. Minimal invasiveness. The nanowires used will generally have diameters of sub-100 nm and with high aspect ratio. This structural feature ensures the non-invasiveness of the proposed platforms. 2. High flexibility. These nanowires are highly flexible and yet mechanically robust. The twisting and bending in these nanowires will not cause significant optical propagation loss, and greatly ease the application of such probes in single cell imaging. 3. High refractive index. As a result, these nanowires are efficient sub-wavelength optical waveguides even in high-index physiological liquids and/or living cell environments. 4. Evanescent wave optical sensing principle with highly localized excitation and detection scheme. Because of the subwavelength optical waveguiding nature of these nanowires, the probe volume of these nanowires can be limited to the very tip of the nanowires (i.e. down to pico- and femtoliter). 5. Nonlinear optical conversion capability. This application of the nonlinear optical nanowires into the proposed probe platforms will introduce two important features: subwavelength waveguiding and frequency conversion capability. We will be able to input IR beam at one end of the nanowires and use the visible or UV output on the other end to do the cell imaging/probing. The use of IR as input beam would again greatly benefit the entire imaging process in realistic physiological environments. Such novel nanowire probes promise intracellular imaging with greatly enhanced 3-dimensional spatial resolution as well as temporal resolution. In addition, these nanowire probes could also be used to spot- delivery or extraction of chemicals (proteins/DNAs) from single living cells with much improved spatial resolution as compared to conventional delivery/extraction methods.
描述(由申请人提供):在这个R21计划中,我们建议开发一种用于单细胞内窥镜检查的高度集成和高灵敏度的纳米线探针平台。该平台的中心是近场扫描光学显微镜 (NSOM) 探针尖端上的集成柔性纳米线。该计划将建立在我们在纳米结构合成/组装、系统集成和基于纳米线的光子学方面的广泛专业知识之上。我们广泛的能力和专业知识将使我们处于独特的地位,以实现潜在的突破并在单细胞成像和探测领域开辟新的可能性。开发这种柔性纳米线探针将使我们能够监测单个活细胞内的体内生物过程,并将极大地提高我们对细胞功能、细胞内生理过程、细胞信号通路的基本理解,从而彻底改变细胞生物学。我们将成功开发 NSOM 纳米线探针原型,并展示其在细胞内成像和探测方面的原理验证应用。我们将开发和优化组装这些细胞内窥镜纳米线探针的策略,即直接纳米操作并将纳米线附着到 NSOM 探针上。在本研究中,我们将测试两种类型的纳米线作为亚波长光波导。一种是传统的介电材料,如SnO2,另一种是具有强非线性光学特性的材料,如KNbO3。这些拟议的细胞内窥镜探针有几个关键特征: 1. 微创性。所使用的纳米线通常具有低于 100 nm 的直径和高纵横比。这种结构特征确保了所提出的平台的非侵入性。 2、灵活性高。这些纳米线高度灵活且机械坚固。这些纳米线的扭曲和弯曲不会造成显着的光学传播损耗,并且极大地简化了此类探针在单细胞成像中的应用。 3、折射率高。因此,即使在高折射率生理液体和/或活细胞环境中,这些纳米线也是有效的亚波长光波导。 4. 倏逝波光学传感原理,具有高度局部化的激励和检测方案。由于这些纳米线的亚波长光波导性质,这些纳米线的探针体积可以限制在纳米线的最尖端(即低至皮升和飞升)。 5.非线性光学转换能力。将非线性光学纳米线应用到所提出的探针平台中将引入两个重要特征:亚波长波导和频率转换能力。我们将能够在纳米线的一端输入红外光束,并在另一端使用可见光或紫外输出来进行细胞成像/探测。使用红外作为输入光束将再次极大地有利于现实生理环境中的整个成像过程。这种新颖的纳米线探针有望实现大幅增强的 3 维空间分辨率和时间分辨率的细胞内成像。此外,这些纳米线探针还可用于从单个活细胞中点输送或提取化学物质(蛋白质/DNA),与传统的输送/提取方法相比,空间分辨率大大提高。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Capture and alignment of phi29 viral particles in sub-40 nanometer porous alumina membranes.
- DOI:10.1007/s10544-008-9217-0
- 发表时间:2009-02
- 期刊:
- 影响因子:2.8
- 作者:Moon JM;Akin D;Xuan Y;Ye PD;Guo P;Bashir R
- 通讯作者:Bashir R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peidong Yang其他文献
Peidong Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peidong Yang', 18)}}的其他基金
Project 5: Nanotechnology-Based Environmental Sensing
项目5:基于纳米技术的环境传感
- 批准号:
8116787 - 财政年份:
- 资助金额:
$ 17.29万 - 项目类别:
相似国自然基金
流动乳品体系中嗜热混合菌生物被膜的形成过程及机制研究
- 批准号:32302027
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物质/含氮废弃物可控热裂解-定向催化重整过程调控与多还原组分分解炉脱硝机制研究
- 批准号:52372024
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
玉米秸秆生物炭投加对促进低浓度废水厌氧消化的过程与机理研究
- 批准号:52300035
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
混合营养型原生生物代谢可塑性对气候变暖和水体富营养化的响应过程及机制
- 批准号:32371625
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
土壤环境中四溴双酚A及其衍生物的微生物转化过程及机制研究
- 批准号:42377386
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
3D Freeform Ice Printing to Create Tissues with Biomimetic Vasculature
3D 自由形式冰打印可创建具有仿生脉管系统的组织
- 批准号:
10432990 - 财政年份:2022
- 资助金额:
$ 17.29万 - 项目类别:
Mechanistic bases of vessel diameter regulation by Plexind1 - Resubmission
Plexind1 调节血管直径的机制基础 - 重新提交
- 批准号:
10522665 - 财政年份:2022
- 资助金额:
$ 17.29万 - 项目类别:
Cryogenic High-throughput Cellular Imaging System
低温高通量细胞成像系统
- 批准号:
10545696 - 财政年份:2022
- 资助金额:
$ 17.29万 - 项目类别:
Automatic Wide-Field Optical Coherence Tomography for Assessment of Transplant Kidney Viability
用于评估移植肾活力的自动广域光学相干断层扫描
- 批准号:
10501992 - 财政年份:2022
- 资助金额:
$ 17.29万 - 项目类别:
Mechanistic bases of vessel diameter regulation by Plexind1 - Resubmission
Plexind1 调节血管直径的机制基础 - 重新提交
- 批准号:
10662561 - 财政年份:2022
- 资助金额:
$ 17.29万 - 项目类别: