Data-Driven Identification of the Acute Respiratory Distress Syndrome
数据驱动的急性呼吸窘迫综合征识别
基本信息
- 批准号:9908166
- 负责人:
- 金额:$ 17.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdult Respiratory Distress SyndromeAffectBayesian NetworkBiometryCaringClinicalClinical InformaticsClinical ResearchClinical TrialsClinical Trials NetworkComplementComplexCritical IllnessDataData ScienceDevelopmentDiagnosisDiagnosticDoctor of PhilosophyEducational StatusElectronic Health RecordEnrollmentEnsureEnvironmentEpidemiologyEvidence based practiceEvidence based treatmentFutureGoalsHourIndividualInfrastructureIntensive Care UnitsInvestigationKnowledgeLaboratoriesLifeLungLung diseasesMachine LearningMentored Research Scientist Development AwardMentorsMethodsMichiganModelingMonitorNational Heart, Lung, and Blood InstituteNatural HistoryNatural Language ProcessingParticipantPatient CarePatientsPerformancePhysiciansPositioning AttributePrevention trialProcessReal-Time SystemsRecordsReference StandardsResearchResearch DesignResearch PersonnelResearch Project GrantsResolutionRetrospective cohortRetrospective cohort studyRiskRisk EstimateRisk FactorsSavingsSpecificityStatistical ModelsSyndromeSystemTechniquesTestingTextTimeTrainingUniversitiesValidationWorkbasebig biomedical datacareerclinical phenotypeclinical practicecohortdesigndigitalelectronic dataevidence basehealth datahigh riskhuman diseaseimprovedinsightmachine learning methodmeetingsmonitoring devicemortalitynovelnovel strategiesnovel therapeuticsphenotypic datapredictive modelingpreventprospectiverecruitrespiratory healthrisk prediction modelstatistical learning
项目摘要
PROJECT SUMMARY/ABSTRACT
This K01 proposal will complete Michael Sjoding, MD, MSc's training towards his long-term career goal of
improving care of patients with acute respiratory disease. Dr. Sjoding is a Pulmonary and Critical Physician at
the University of Michigan with master's level training in clinical study design and biostatistics. This proposal
builds on Dr. Sjoding's prior expertise, providing protected time for additional training in data science, the
technical methods for deriving new knowledge about human disease from “Big Biomedical Data” in the rich
training environment at the University of Michigan. The project's research goal is to develop real-time systems
to improve accuracy and timeliness of Acute Respiratory Distress Syndrome (ARDS) diagnosis using
electronic health record data. ARDS is a critical illness syndrome affecting 200,000 people each year with high
mortality. Under-recognition of this syndrome is the key barrier to providing evidence-based care to patients
with ARDS. The research will be completed under the guidance of primary mentor Theodore J. Iwashyna, MD,
PhD and co-mentors Timothy P. Hofer, MD, MSc, and Kayvan Najarian, PhD, and a scientific advisory board
with additional expertise in data science and applied clinical informatics. The 5-year plan includes didactic
coursework, mentored research, and professional development activities, with defined milestones to ensure
successful transition to independence. The mentored research has 2 specific Aims:
Aim 1. Develop a novel system for identifying ARDS digital signatures in electronic health data to accurately
identify patients meeting ARDS criteria.
Aim 2. Define the early natural history of developing ARDS, to more accurately predict patients' future ARDS
risk.
Both Aims will utilize rigorous 2-part designs, with the ARDS diagnostic and prediction models developed in the
same retrospective cohort and validated in temporally distinct cohorts. In completing these high-level aims, the
research will leverage high-resolution electronic health record and beside-monitoring device data to study
ARDS with unprecedented detail, providing new insights into ARDS epidemiology and early natural history.
This work will build to at least two R01 proposals: (1) testing the impact of a real-time electronic health record-
based ARDS diagnostic system to improve evidence-based care practice, (2) defining ARDS subtypes using
deep clinical phenotypic data. The work will build toward a programmatic line of research using high-resolution
electronic health data to improve understanding of critical illness and respiratory disease. In completing this
proposal, Dr. Sjoding will acquire unique computational expertise in data science methods, complementing his
previous training, which he can then readily apply to address other research challenges in respiratory health.
The ambitious but feasible training and mentored research proposed during this K01 award will allow him to
achieve his goal of becoming an independent investigator.
项目概要/摘要
该 K01 提案将完成 Michael Sjoding 医学博士、理学硕士的培训,以实现他的长期职业目标:
Sjoding 博士是一名肺科和重症医师,致力于改善急性呼吸道疾病患者的护理。
密歇根大学提供临床研究设计和生物统计学硕士学位培训。
以 Sjoding 博士先前的专业知识为基础,为数据科学方面的额外培训提供受保护的时间,
从丰富的“生物医学大数据”中获取人类疾病新知识的技术方法
密歇根大学的培训环境 该项目的研究目标是开发实时系统。
提高急性呼吸窘迫综合征 (ARDS) 诊断的准确性和及时性
ARDS 是一种严重疾病综合症,每年影响 20 万人。
对这种综合征的认识不足是向患者提供循证护理的主要障碍。
该研究将在主要导师 Theodore J. Iwashyna 医学博士的指导下完成。
博士和共同导师 Timothy P. Hofer(医学博士、理学硕士)和 Kayvan Najarian(博士)以及科学顾问委员会
拥有数据科学和应用临床信息学方面的额外专业知识。五年计划包括教学。
课程作业、指导研究和专业发展活动,并具有明确的里程碑,以确保
成功过渡到独立。指导研究有两个具体目标:
目标 1. 开发一种新颖的系统,用于识别电子健康数据中的 ARDS 数字签名,以准确地识别 ARDS 数字签名。
识别符合 ARDS 标准的患者。
目标 2. 定义发生 ARDS 的早期自然史,以更准确地预测患者未来的 ARDS
风险。
这两个目标都将采用严格的两部分设计,其中 ARDS 诊断和预测模型是在
在同一回顾性队列中,并在时间上不同的队列中进行验证,以完成这些高级目标。
研究将利用高分辨率电子健康记录和旁边的监测设备数据进行研究
ARDS 具有前所未有的详细信息,为 ARDS 流行病学和早期自然史提供了新的见解。
这项工作将构建至少两个 R01 提案:(1) 测试实时电子健康记录的影响 -
基于 ARDS 诊断系统,以改善循证护理实践,(2) 使用定义 ARDS 亚型
这项工作将建立一个使用高分辨率的程序化研究路线。
电子健康数据,以提高对危重疾病和呼吸道疾病的了解。
根据提案,Sjoding 博士将获得数据科学方法方面独特的计算专业知识,补充他的
他可以轻松地将其应用于解决呼吸健康方面的其他研究挑战。
K01 奖项期间提出的雄心勃勃但可行的培训和指导研究将使他能够
实现了成为一名独立调查员的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael William Sjoding其他文献
Michael William Sjoding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael William Sjoding', 18)}}的其他基金
Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
- 批准号:
10687507 - 财政年份:2021
- 资助金额:
$ 17.27万 - 项目类别:
Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
- 批准号:
10693285 - 财政年份:2021
- 资助金额:
$ 17.27万 - 项目类别:
Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
- 批准号:
10491373 - 财政年份:2021
- 资助金额:
$ 17.27万 - 项目类别:
Human-AI Collaborations to Improve Accuracy and Mitigate Bias in Acute Dyspnea Diagnosis
人机协作提高急性呼吸困难诊断的准确性并减少偏差
- 批准号:
10272748 - 财政年份:2021
- 资助金额:
$ 17.27万 - 项目类别:
SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea
SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法
- 批准号:
10458527 - 财政年份:2019
- 资助金额:
$ 17.27万 - 项目类别:
SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea
SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法
- 批准号:
10221055 - 财政年份:2019
- 资助金额:
$ 17.27万 - 项目类别:
SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea
SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法
- 批准号:
10015336 - 财政年份:2019
- 资助金额:
$ 17.27万 - 项目类别:
SCH: Leveraging Clinical Time Series to Learn Optimal Treatment of Acute Dyspnea
SCH:利用临床时间序列学习急性呼吸困难的最佳治疗方法
- 批准号:
9927810 - 财政年份:2019
- 资助金额:
$ 17.27万 - 项目类别:
Data-Driven Identification of the Acute Respiratory Distress Syndrome
数据驱动的急性呼吸窘迫综合征识别
- 批准号:
9292908 - 财政年份:2017
- 资助金额:
$ 17.27万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Development of a predictive model and electronic health record-based probability scoring system and dashboard for postoperative respiratory failure
开发术后呼吸衰竭的预测模型和基于电子健康记录的概率评分系统和仪表板
- 批准号:
10643357 - 财政年份:2023
- 资助金额:
$ 17.27万 - 项目类别:
2/2: PREcision VENTilation to attenuate Ventilation-Induced Lung Injury (PREVENT VILI)
2/2:精确通气以减轻通气引起的肺损伤(预防 VILI)
- 批准号:
10738959 - 财政年份:2023
- 资助金额:
$ 17.27万 - 项目类别:
Molecular Phenotyping of ARDS, Pneumonia, and Sepsis using Latent Class Analysis and Metagenomic Sequencing
使用潜在类别分析和宏基因组测序对 ARDS、肺炎和脓毒症进行分子表型分析
- 批准号:
10649372 - 财政年份:2023
- 资助金额:
$ 17.27万 - 项目类别:
Preclinical development of a synthetic lung surfactant dry powder aerosol for hypoxemia or acute respiratory distress syndrome patients receiving different modes of ventilation support
用于接受不同通气支持模式的低氧血症或急性呼吸窘迫综合征患者的合成肺表面活性剂干粉气雾剂的临床前开发
- 批准号:
10658610 - 财政年份:2023
- 资助金额:
$ 17.27万 - 项目类别: