Quality control in the secretory pathway
分泌途径的质量控制
基本信息
- 批准号:9908930
- 负责人:
- 金额:$ 6.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-11 至 2022-12-10
- 项目状态:已结题
- 来源:
- 关键词:AddressAutophagocytosisBacteriaBiological AssayCell SeparationCellsCellular biologyClientCytosolDNA sequencingDetectionDiabetes MellitusDiseaseEndoplasmic ReticulumEnzymesFutureGenetic ScreeningGolgi ApparatusHeat shock proteinsHomeostasisHydroxymethylglutaryl-CoA reductaseImmunoglobulin FragmentsIn VitroInfectionLibrariesMammalsMediatingMedicalMembraneMembrane ProteinsMethodsMolecularMolecular ChaperonesMutateNeurodegenerative DisordersOrganismPathway interactionsPeptide LibraryPhysiologicalPolyubiquitinationProcessProteinsProteomeQuality ControlReagentSaccharomyces cerevisiaeSignal TransductionSiteSterolsStructureSystemTechniquesTechnologyWorkYeastsbiochemical toolsbiological adaptation to stressglycosylationhuman diseasein vivomilligrammisfolded proteinmulticatalytic endopeptidase complexnanobodiespathogenpathogenic viruspreventprotein degradationprotein foldingprotein misfoldingproteostasisreconstitutionscreeningsecretory proteintherapeutic targettool
项目摘要
Abstract
The endoplasmic reticulum (ER) is a major site for protein folding and maturation within the cell, and a
wide array of human diseases, including neurodegenerative diseases, familial protein folding disorders, and
diabetes, are associated with disruptions to ER protein folding homeostasis. Endoplasmic reticulum associated
degradation (ERAD) is a highly conserved pathway that functions to promote protein homeostasis by
preventing misfolded protein accumulation. It is an integral part of the ER unfolded protein stress response. In
addition to degradation of misfolded proteins, ERAD regulates the protein levels of ER-resident enzymes, such
as the HMG-CoA reductase, the rate-limiting enzyme in sterol synthesis. Interestingly, the ERAD machinery is
hijacked by viral pathogens during infection, meaning it is a potential therapeutic target.
The process of ERAD involves transferring target protein substrates from the ER lumen or membrane
to the cytosol for degradation. It can be divided into five distinct steps: substrate recognition, retro-translocation
across the ER membrane, polyubiquitination, extraction from the membrane, and proteasomal degradation.
While the molecular details of the later steps have become increasingly clear, how ERAD machinery
recognizes misfolded or other substrate targets remains ambiguous. Previous work identified substrate
glycosylation state as an important influencer of interactions with ERAD machinery. Nevertheless,
glycosylation is dispensable for degradation, while substrate misfolding is not. The aims of this proposal seek
to identify principles of substrate recognition by ERAD and other protein quality control machinery in the
secretory pathway. Combining DNA sequencing technology and cell sorting techniques, we will generate and
screen libraries of mutated or degron-fused non-ERAD substrates in S. cerevisiae to identify features that are
recognized by ERAD machinery. We will then validate features through cell biology and in vitro reconstitution
assays. Understanding the principles of substrate recognition by ERAD will illuminate the physiological ERAD
targets, should allow us to predict additional targets in higher organisms, and understand exploitation of the
system by certain pathogens.
抽象的
内质网 (ER) 是细胞内蛋白质折叠和成熟的主要场所,
广泛的人类疾病,包括神经退行性疾病、家族性蛋白质折叠障碍和
糖尿病与 ER 蛋白折叠稳态的破坏有关。内质网相关
降解(ERAD)是一种高度保守的途径,通过以下方式促进蛋白质稳态:
防止错误折叠的蛋白质积累。它是内质网未折叠蛋白应激反应的一个组成部分。在
除了降解错误折叠蛋白外,ERAD 还调节 ER 驻留酶的蛋白水平,例如
作为 HMG-CoA 还原酶,甾醇合成中的限速酶。有趣的是,ERAD 机械是
在感染过程中被病毒病原体劫持,这意味着它是一个潜在的治疗靶点。
ERAD 的过程涉及从 ER 腔或膜转移靶蛋白底物
进入细胞质进行降解。它可以分为五个不同的步骤:底物识别、逆转录转位
穿过内质网膜、多聚泛素化、膜提取和蛋白酶体降解。
虽然后续步骤的分子细节已变得越来越清晰,但 ERAD 机制如何
识别错误折叠或其他底物目标仍然不明确。先前的工作确定了底物
糖基化状态是与 ERAD 机制相互作用的重要影响因素。尽管如此,
糖基化对于降解来说是可有可无的,而底物错误折叠则不然。本提案的目的是寻求
确定 ERAD 和其他蛋白质质量控制机制的底物识别原理
分泌途径。结合DNA测序技术和细胞分选技术,我们将生成并
筛选酿酒酵母中突变或降解决定子融合的非 ERAD 底物文库,以确定以下特征
获得 ERAD 机械认可。然后我们将通过细胞生物学和体外重建来验证特征
化验。了解 ERAD 识别底物的原理将阐明生理 ERAD
目标,应该使我们能够预测高等生物中的其他目标,并了解对这些目标的利用
系统受到某些病原体的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Starr Plumb其他文献
Rachel Starr Plumb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Starr Plumb', 18)}}的其他基金
相似国自然基金
万古霉素胁迫金葡菌释放胞外囊泡劫持巨噬细胞自噬促进细菌胞内生存的作用和机制研究
- 批准号:82272393
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
尿道致病性大肠杆菌感染诱导宿主RhoB和HSPA8通过自噬清除胞内细菌的作用和机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
酒精介导自噬调控慢性非细菌性前列腺炎Th17/Treg失衡作用及机制研究
- 批准号:81870519
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
TOR通路介导的细胞自噬在仿刺参抗灿烂弧菌感染中的作用研究
- 批准号:31802331
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于TLR/自噬/NF-κB信号系统探讨复方肿节风雾化剂对大鼠细菌性慢性咽炎的干预作用
- 批准号:81760882
- 批准年份:2017
- 资助金额:34.0 万元
- 项目类别:地区科学基金项目
相似海外基金
GENETICS OF ENDOCYTIC TRAFFICKING IN THE DROSOPHILA EYE
果蝇眼睛内吞转运的遗传学
- 批准号:
10680753 - 财政年份:2023
- 资助金额:
$ 6.53万 - 项目类别:
Interplay of processed diet, gut microbiota, and interferon-linked mucosal immunity in the onset and prevalence of inflammatory bowel disease
加工饮食、肠道微生物群和干扰素相关粘膜免疫在炎症性肠病发病和患病率中的相互作用
- 批准号:
10658741 - 财政年份:2023
- 资助金额:
$ 6.53万 - 项目类别:
The Anti-Autophagy Arsenal of Legionella pneumophila
嗜肺军团菌的抗自噬阿森纳
- 批准号:
10679185 - 财政年份:2023
- 资助金额:
$ 6.53万 - 项目类别:
Peroxisomal impacts on cellular quality control
过氧化物酶体对细胞质量控制的影响
- 批准号:
10429191 - 财政年份:2022
- 资助金额:
$ 6.53万 - 项目类别: