IOPSxV: Novel Visualization for Non-Fluoroscopic 3D Image Guidance for Peripheral Vascular Interventions.
IOPSxV:用于外周血管干预的非透视 3D 图像指导的新型可视化。
基本信息
- 批准号:9908555
- 负责人:
- 金额:$ 63.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAgreementAlgorithm DesignAlgorithmsAnatomyAngiographyArteriesAtherosclerosisBalloon AngioplastyBlood VesselsBrainCadaverCardiacCaregiversCaringCathetersClinicalColorComplexContrast MediaCustomDataDependenceDepositionDevelopmentDevice DesignsDevicesDiagnosticDiseaseEconomicsExposure toFeasibility StudiesFemoral veinFinancial compensationFluoroscopyFundingGoalsGoldHealthHealthcareHeartHumanHybridsImageIndividualInterventionIntuitionIonizing radiationLimb structureLocationLow Dose RadiationLower ExtremityMapsMeasurementMethodsModelingNeurologicOperative Surgical ProceduresOutcomePatientsPerformancePeripheralPeripheral Vascular DiseasesPhasePositioning AttributePostoperative ComplicationsProceduresProcessQuestionnairesRadiationRadiation Dose UnitResourcesRiskRoentgen RaysRotationRural PopulationScanningSiteSmall Business Innovation Research GrantSurveysSystemTechniquesTechnologyTestingThree-Dimensional ImageThree-Dimensional ImagingTimeUncertaintyVascular SystemVisualizationWorkX-Ray Computed Tomographybasebonecalcificationcommercializationcone-beam computed tomographycostdesignexperiencehealth care qualityimage guidedimprovedinnovationinterestmathematical methodsmathematical modelminiaturizeminimally invasivenephrotoxicitynext generationnovelpatient populationprototypesensorsoftware developmentsurgery outcomethree-dimensional visualizationtoolusability
项目摘要
Project Summary/ Abstract
This SBIR Direct to Phase II project will advance the commercialization of our Intra-Operative Positioning
System (IOPS) to improve visualization and navigation of atherosclerotic vessels in patients with peripheral
vascular disease (PVD), thereby overcoming limitations of 2D x-ray fluoroscopy (“fluoro”) in peripheral
interventions. Our novel product employs registration methods that will increase precision of navigation of
catheters and guidewires devices through narrow or heavily calcified vasculature and provide visualization
from angles and with enhancement not achievable with fluoro. This approach not only enables operators to
see better during an intervention, but also dramatically reduces the need for exposure to harmful ionizing
radiation that poses health risks for both clinicians and patients. Importantly, enabling this novel level of
visualization will lead to a potential paradigm shift in the way PVD is treated. In this study we endeavor to
demonstrate new IOPS capabilities to 1) remove the IOPS dependency on cone beam CT imaging while
maintaining high tracking accuracy, 2) provide immediately intuitive 3D color visualization of calcified vessels
for enhanced surgical experience and outcomes, and 3) reduce the time and radiation dose required for
navigation. Ultimately, non-radiation-based visualization that is not limited by a 2D display will impact
healthcare by decreasing radiation to patients and OR staff, reducing procedure time and cost, and
decreasing operative and postoperative complications.
Centerline Biomedical has invested significant company resources to develop the IOPS technology, which is
currently under FDA review for 510(k) clearance. The next generation product, IOPSxV, builds on this
platform and, has been demonstrated to have feasibility to provide clinicians unparalleled ability to navigate
through a blood vessel which may have complex calcified plaque and be distending or deforming. In Phase II,
we will optimize miniaturized sensor-equipped catheters and patient position tracking pads, and validate the
calcification and deformation registration mathematical models in the human cadaveric limb model. Phase II
outcomes will demonstrate that use of IOPSxV as an adjunct to and confirmed by fluoro is safe and effective
and can lower radiation dose, while obtaining superior imaging of diseased vasculature in PVD patients,
paving the way to realizing the full clinical and economic benefits of endovascular interventions. Converting
this innovation to a product will expand the patient population eligible for minimally-invasive PVD treatment.
Additionally, by reducing component costs and dependence on complex imaging typically found only in large
hybrid surgical suites, we will be making IOPS more affordable and accessible to rural populations.
Commercialization of our technology will have implications beyond PVD, to include many emerging vascular,
cardiac, and neurologic procedures to benefit a broader population of patients, caregivers, and enable
delivery of better quality healthcare globally.!
项目概要/摘要
该 SBIR Direct 至第二阶段项目将推动我们的手术内定位的商业化
系统(IOPS)可改善外周动脉粥样硬化患者动脉粥样硬化血管的可视化和导航
血管疾病 (PVD),克服 2D X 射线透视检查(“荧光”)在外周血管疾病中的局限性
我们的新颖产品采用的注册方法将提高导航的精度。
导管和导丝装置穿过狭窄或严重钙化的脉管系统并提供可视化
从角度和荧光无法实现的增强这种方法不仅使操作员能够
在干预期间看得更清楚,而且还大大减少了暴露于有害电离的需要
重要的是,这种辐射对人群和患者都构成健康风险。
可视化将导致 PVD 治疗方式的潜在范式转变。在这项研究中,我们致力于实现这一目标。
展示新的 IOPS 功能,以 1) 消除 IOPS 对锥束 CT 成像的依赖,同时
保持高跟踪精度,2) 提供钙化血管立即直观的 3D 彩色可视化
增强手术体验和效果,以及 3) 减少手术所需的时间和辐射剂量
最终,不受 2D 显示限制的非辐射可视化将会产生影响。
通过减少对患者和手术室工作人员的辐射、减少手术时间和成本来实现医疗保健
减少手术和术后并发症。
Centerline Biomedical 投入了大量公司资源来开发 IOPS 技术,该技术
目前正在接受 FDA 510(k) 许可审查 下一代产品 IOPSxV 以此为基础。
平台,并已被证明具有提供无与伦比的导航能力的可行性
通过可能有复杂钙化斑块并且膨胀或变形的血管。
我们将优化配备传感器的微型导管和患者位置跟踪垫,并验证
人体尸体肢体模型第二阶段的钙化和变形登记数学模型。
结果将证明使用 IOPSxV 作为氟的辅助药物并经氟验证是安全有效的
并且可以降低辐射剂量,同时获得 PVD 患者病变脉管系统的优质成像,
为实现血管内介入治疗的全面临床和经济效益铺平道路。
这项产品创新将扩大适合接受微创 PVD 治疗的患者群体。
此外,通过降低组件成本和对复杂成像的依赖(通常只存在于大型设备中)
混合手术室,我们将使农村人口更负担得起并更容易获得 IOPS。
我们技术的商业化将产生 PVD 之外的影响,包括许多新兴的血管、
心脏和神经系统手术使更广泛的患者、护理人员受益,并使
在全球范围内提供更优质的医疗保健。!
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vikash Goel其他文献
Vikash Goel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vikash Goel', 18)}}的其他基金
3D Holographic Guidance, Navigation, and Control (3D GN&C) for Endovascular Aortic Repair (EVAR)
3D 全息制导、导航和控制 (3D GN
- 批准号:
10001634 - 财政年份:2018
- 资助金额:
$ 63.69万 - 项目类别:
相似国自然基金
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印单向流场诱导构筑多级有序电磁屏蔽结构及调控机理研究
- 批准号:52303036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D纳米打印复合金属硫化物阵列反应器光催化CO2还原制C2研究
- 批准号:22378174
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
丝内/丝间空洞对3D打印连续纤维复合材料损伤机理影响机制与分析方法
- 批准号:52375150
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
- 批准号:
10736961 - 财政年份:2023
- 资助金额:
$ 63.69万 - 项目类别:
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
- 批准号:
10734465 - 财政年份:2023
- 资助金额:
$ 63.69万 - 项目类别:
A novel breast cancer therapy based on secreted protein ligands from CD36+ fibroblasts
基于 CD36 成纤维细胞分泌蛋白配体的新型乳腺癌疗法
- 批准号:
10635290 - 财政年份:2023
- 资助金额:
$ 63.69万 - 项目类别:
3D Printed Microfluidic Artificial Lung for Veteran Rehabilitation
用于退伍军人康复的 3D 打印微流控人工肺
- 批准号:
10629531 - 财政年份:2023
- 资助金额:
$ 63.69万 - 项目类别:
Multi-parametric anthropomorphic MRI Phantoms technology for reliable and reproducible structural and quantitative MRI
多参数拟人 MRI Phantoms 技术可实现可靠且可重复的结构和定量 MRI
- 批准号:
10729161 - 财政年份:2023
- 资助金额:
$ 63.69万 - 项目类别: