Molecular mechanism of nucleobase/vitamin C transporters
核碱基/维生素C转运蛋白的分子机制
基本信息
- 批准号:9900837
- 负责人:
- 金额:$ 35.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:Acquired Immunodeficiency SyndromeAffectAnemiaAnionsAntioxidantsArchaeaAscorbic AcidAscorbic Acid DeficiencyAutomobile DrivingBacteriaBicarbonatesBindingBiochemicalBiochemical ReactionBiological AssayCarrier ProteinsCellsCessation of lifeCollaborationsCouplingCrohn&aposs diseaseCrystallizationCrystallographyCysteineDNA biosynthesisDependenceDiseaseDrug Binding SiteDrug Delivery SystemsDrug TargetingElectrophysiology (science)ElementsExhibitsFamilyFamily memberFatigueFree Radical ScavengersGene FamilyGoalsHealthHemorrhageHepatitisHomologous GeneHumanImpaired wound healingIndividualInflammatoryIntestinesIonsKidneyKineticsLifeLymphoproliferative DisordersMammalsMeasurementMediatingMembraneMental DepressionMetabolicMethodsMicronutrientsModelingMolecularMolecular ConformationMutationOrganismPathway interactionsPetechiaePharmaceutical PreparationsPharmacotherapyPhysiologyProcessProtein ConformationProteinsProtistaPurinesRNA chemical synthesisRattusRegulationResolutionResourcesRoleScurvySignal TransductionSiteSolid NeoplasmStructureSubstrate SpecificityTherapeuticTimeUrsidae FamilyVirus DiseasesVitaminsabsorptionascorbatecofactorcrosslinkdesignfungusinterestmembermultidisciplinarynucleobasenucleobase analognutritionprotein functionpublic health relevanceradiotracersodium DEPENDENDENT vitamin C transporter 1sodium-dependent vitamin C transporter 2solutestoichiometryuptake
项目摘要
DESCRIPTION (provided by applicant): Members of the nucleobase/ascorbate transporter (NAT) gene family transport nucleobases in all kingdoms of live and vitamin C in mammals. In humans, vitamin C (L-ascorbic acid) is an essential micronutrient that serves as an antioxidant scavenger of free radicals and as a cofactor in many enzymatic reactions. Transport of nucleobases is implicated in crucial processes such as DNA and RNA synthesis, cell signaling, and metabolic regulation. In addition, the cellular delivery of nucleobases has gained special interest in therapeutic applications as nucleobase analogs are currently used in the treatment of solid tumors, lymphoproliferative diseases, viral infections such as hepatitis and AIDS, and some inflammatory diseases, e.g., Crohn's disease. Despite the importance of NATs in health, disease, and pharmacotherapy, detailed information about their transport mechanism, which is crucial to exploit their potential as target for drugs with high efficacy, is limited. In this multple PD/PI proposal we seek to understand mechanistic commonalities and differences among members of the NAT family. Building on our recent exciting identification and crystallization of a bacterial NAT homolog (PaaTCp) at 2.85 Å resolution that transports nucleobases and vitamin C in H+ and Na+-dependent fashion, respectively, this project is designed to elucidate basic mechanisms of substrate recognition and translocation in both bacterial and human NAT family members. We propose the following Specific Aims: (1) to identify the substrate and drug binding site(s). The goal is to co-crystallize PaaTCp with its substrates (purines and vitamin C) and nucleobase analogs and then use the structures as a guide to functionally validate the substrate and drug binding sites by mutational studies in conjunction with radiotracer binding; (2) to develop a model of transport for PaaTCp. The goal is to obtain a quantitative understanding of H+- and Na+-dependent substrate transport, including the identification of the H+ and Na+ sites and the elucidation of the stoichiometry of the potential ion (H+ and Na+) coupling mechanism, and to describe precisely the kinetics of transport; (3) to illustrate conformational changes associated with (co)substrate translocation and how drugs affect these transitions. The goal is to crystallize PaaTCp in outward- and inward-facing conformations, and to use crosslinking and cysteine accessibility assays to validate the structures, or when structures with alternate conformations are not attainable, to deduce conformational changes; (4) to establish the relevance of our structural and functional findings in PaaTCp to understanding the function of the human SVCTs by exploring the key elements of substrate binding, and its coupling to the ion motive force to develop a general applicable mechanistic model of function for proteins with PaaTCp fold.
描述(由申请人提供):核碱基/抗坏血酸转运蛋白 (NAT) 基因家族的成员在哺乳动物的所有活体和维生素 C 领域运输核碱基,维生素 C(L-抗坏血酸)是一种必需的微量营养素。自由基的抗氧化剂清除剂,作为许多酶反应的辅助因子,核碱基的运输涉及 DNA 和 RNA 合成等关键过程,此外,核碱基的细胞递送在治疗应用中引起了特别的兴趣,因为核碱基类似物目前用于治疗实体瘤、淋巴增殖性疾病、肝炎和艾滋病等病毒感染以及一些炎症性疾病。 ,例如克罗恩病,尽管 NAT 在健康、疾病和药物治疗中很重要,但有关其转运机制的详细信息对于开发其作为高效药物靶点的潜力至关重要,在这项多项 PD/PI 提案中,我们以最近令人兴奋的 2.85 Å 分辨率的细菌 NAT 同系物 (PaaTCp) 的鉴定和结晶为基础,试图了解 NAT 家族成员之间的机制共性和差异。 C 分别以 H+ 和 Na+ 依赖的方式,该项目旨在阐明细菌和人类 NAT 家族成员的底物识别和易位的基本机制。具体目标如下: (1) 确定底物和药物结合位点 目标是将 PaaTCp 与其底物(嘌呤和维生素 C)和核碱基类似物共结晶,然后使用结构作为功能验证的指导。通过突变研究结合放射性示踪剂结合来确定底物和药物结合位点;(2) 开发 PaaTCp 的转运模型,目标是定量了解 H+- 和 Na+ 依赖性底物。运输,包括识别 H+ 和 Na+ 位点以及阐明潜在离子(H+ 和 Na+)耦合机制的化学计量,并精确描述运输动力学;以及药物如何影响这些转变。以向外和向内的构象结晶 PaaTCp,并使用交联和半胱氨酸可及性测定来验证结构,或者当无法获得具有替代构象的结构时,推断构象变化;(4) 通过探索底物结合的关键要素及其偶联,确定我们在 PaaTCp 中的结构和功能发现与理解人类 SVCT 功能的相关性;离子动力来开发具有 PaaTCp 折叠的蛋白质的普遍适用的功能机制模型。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Insight into the direct interaction of Na+ with NhaA and mechanistic implications.
深入了解 Na 与 NhaA 的直接相互作用及其机制含义。
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:4.6
- 作者:Quick, Matthias;Dwivedi, Manish;Padan, Etana
- 通讯作者:Padan, Etana
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthias Quick其他文献
Matthias Quick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthias Quick', 18)}}的其他基金
Structure and mechanism of pendrin and the mutations that cause Pendred's Syndrome
pendrin的结构和机制以及引起Pendred综合征的突变
- 批准号:
10719603 - 财政年份:2023
- 资助金额:
$ 35.32万 - 项目类别:
Molecular mechanism of nucleobase/vitamin C transporters
核碱基/维生素C转运蛋白的分子机制
- 批准号:
9281755 - 财政年份:2016
- 资助金额:
$ 35.32万 - 项目类别:
Molecular mechanism of nucleobase/vitamin C transporters
核碱基/维生素C转运蛋白的分子机制
- 批准号:
9127471 - 财政年份:2016
- 资助金额:
$ 35.32万 - 项目类别:
Molecular mechanism of nucleobase/vitamin C transporters
核碱基/维生素C转运蛋白的分子机制
- 批准号:
9346958 - 财政年份:2016
- 资助金额:
$ 35.32万 - 项目类别:
相似国自然基金
BeAn 58058病毒影响cofilin 1功能介导重型再生障碍性贫血患者髓样树突状细胞激活及其机制的研究
- 批准号:82300239
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
影响α地中海贫血表型严重性的PIP4K2A基因变异的鉴定及机制研究
- 批准号:82370122
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于高通量饱和编辑鉴定和分析影响ß-地中海贫血表型的遗传变异
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
鸡传染性贫血病毒Apoptin基因转录调控的分子机制及对病毒增殖的影响
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
鉴定影响表型的新遗传因素并建立重型β地中海贫血风险评估模型
- 批准号:81870148
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
Predicting neurodevelopmental risk in children born to mothers living with HIV in Kenya
预测肯尼亚艾滋病毒感染者母亲所生儿童的神经发育风险
- 批准号:
10161373 - 财政年份:2021
- 资助金额:
$ 35.32万 - 项目类别:
Predicting neurodevelopmental risk in children born to mothers living with HIV in Kenya
预测肯尼亚艾滋病毒感染者母亲所生儿童的神经发育风险
- 批准号:
10390434 - 财政年份:2021
- 资助金额:
$ 35.32万 - 项目类别:
Predicting neurodevelopmental risk in children born to mothers living with HIV in Kenya
预测肯尼亚艾滋病毒感染者母亲所生儿童的神经发育风险
- 批准号:
10557155 - 财政年份:2021
- 资助金额:
$ 35.32万 - 项目类别:
The role of SERINC5 during retrovirus infection in vivo
SERINC5在体内逆转录病毒感染过程中的作用
- 批准号:
9887341 - 财政年份:2020
- 资助金额:
$ 35.32万 - 项目类别:
The role of SERINC5 during retrovirus infection in vivo
SERINC5在体内逆转录病毒感染过程中的作用
- 批准号:
10082429 - 财政年份:2020
- 资助金额:
$ 35.32万 - 项目类别: