Nanoparticles based mRNA delivery for treatment of cystic fibrosis
基于纳米颗粒的 mRNA 递送治疗囊性纤维化
基本信息
- 批准号:9898461
- 负责人:
- 金额:$ 66.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AerosolsApicalAtomic Force MicroscopyBiologicalBiological AvailabilityBronchoalveolar Lavage FluidCarrier ProteinsCationsCellsCharacteristicsChemicalsChloride ChannelsChloridesCholesterolClinicalClinical TrialsComplexConfocal MicroscopyCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorCystic Fibrosis sputumDNADehydrationDiseaseDisease ProgressionDoseElectronsEngineeringEpithelialEpitheliumExposure toGene DeliveryGene ExpressionGene Therapy AgentGene Transduction AgentGene TransferGenesGenetic MaterialsGoalsHalf-LifeHistologyHumanIn VitroInflammatoryInhalationInvestigationIonsKnockout MiceLabelLipidsLiquid substanceLocationLungLung diseasesMeasuresMediatingMessenger RNAModelingModificationMorphologyMovementMucous MembraneMucous body substanceMusMutationNasal EpitheliumNebulizerNon-Viral VectorNucleic AcidsObstructionParticle SizePatient-Focused OutcomesPatientsPenetrationPharmaceutical PreparationsPhasePolymersProcessProductionPropertyPulmonary FibrosisPulmonary PathologyRNARattusRecoverySafetySputumStructureSurfaceSurface PropertiesSystemTestingTherapeutic EffectThickTissuesToxic effectToxicologyTransfectionTranslationsVariantViralX ray diffraction analysisaerosolizedanalogbasecholesterol analogcystic fibrosis mucuscystic fibrosis patientscytokinedisease phenotypeepithelial Na+ channelgene correctiongene replacementgene therapygenetic payloadgenotyped patientsimprovedin vivolipid nanoparticleliposomal deliveryloss of functionmRNA deliverymouse modelnanocarriernanoparticlenext generationnovelnovel strategiesoverexpressionparticlepreventprotein expressionprotein functionrestorationsuccesssurface coatingtraffickinguptake
项目摘要
ABSTRACT:
Cystic fibrosis (CF) is conferred by any of ≥1200 known mutations in the gene encoding the CFTR, an ion
transporter protein, but in principle, a single gene therapy agent that delivers expression of functional CFTR
could treat. Prior attempts to do so have used adeno-associated viral or liposomal delivery systems to deliver
CFTR DNA. Although some of these reached Phase I-IIB clinical trials, they failed to produce consistent,
impactful improvement of patient outcomes. We developed a novel lipid nanoparticle (LNP)-based system to
deliver mRNA, and found it successfully restored up to 55% of normal CFTR-mediated chloride efflux in the
nasal epithelium of CFTR-deficient mice. To exploit and apply these novel discoveries, the long-term goal of this
project is to overcome two key remaining biological barriers that limit entry of all gene therapy vectors into the
lung: 1) the thick, sticky airway/lung epithelial mucus of CF that impedes gene carriers from reaching airway
cells, and 2) inadequate cytosolic bioavailability of genetic material after uptake by cells, due to endosomal
entrapment. Overcoming these two obstacles will require opposing particle characteristics: mucosal penetration
is achievable primarily by stabilizing particles with a muco-inert polymer, whereas intracellular bioavailability of
genetic payloads relies on particle destabilization. There is urgent need to develop nanoparticles stable enough
to cross CF mucus and reach airway cells, yet labile enough to facilitate endosomal escape of genetic material
following cellular uptake. We will meet these criteria, by altering the stability of the LNP core, while maintaining
a muco-inert LNP surface. We found that replacing cholesterol with its naturally-occurring analogues improves
intracellular gene delivery by 200-fold, vs. that seen with a clinically successful cholesterol-containing LNP. We
posit that this major improvement in gene transfer occur via modifications in the enhanced LNP (eLNPs) core
structure and trafficking. Modifications in eLNPs' core structure as we propose will enable disassembly,
endosomal escape and cytosolic delivery of mRNA, while maintaining their muco-inert surface properties. Our
translational project's goal is to analyze LNP structure and intracellular trafficking within the CF lung. Our
objectives are thus 1) elucidate and optimize the structural features of nanocarriers that drive endosomal
trafficking of eLNPs and enhanced gene delivery, 2) test and optimize the ability of altered core structures to
enhance mucopenetration across human CF sputum and state of art mice models, and 3) assess safety of
sustained transmucosal transfection of CFTR mRNA via repeated aerosolization in CF rats, including
toxicological analyses. These studies will significantly advance translational therapy, enabling long-term
restoration of CFTR function to halt or reverse model CF disease progression. Our novel approach alters internal
particle stability via small structural modifications of cholesterol, rather modifying LNP surface coating or cationic
lipid as in prior studies. Our discoveries will propel toward translation new non-viral vector carriers that can
traverse the thick sticky mucus and endosomal barriers to deliver genes for efficacious CF treatment.
抽象的:
囊性纤维化 (CF) 是由编码 CFTR 的基因中任何 ≥1200 个已知突变引起的,CFTR 是一种离子
转运蛋白,但原则上是一种可表达功能性 CFTR 的单一基因治疗剂
之前的尝试是使用腺相关病毒或脂质体递送系统来递送。
尽管其中一些达到了 I-IIB 期临床试验,但它们未能产生一致的、
我们开发了一种基于脂质纳米颗粒(LNP)的新型系统来有效改善患者的治疗效果。
递送 mRNA,发现它成功恢复了正常 CFTR 介导的氯离子流出量的 55%
开发和应用这些新发现是本研究的长期目标。
该项目旨在克服限制所有基因治疗载体进入市场的两个关键的生物障碍
肺:1) 浓稠、粘稠的气道/肺上皮粘液 CF,阻碍基因携带者到达气道
细胞,以及 2) 由于内体的原因,细胞摄取后遗传物质的胞质生物利用度不足
克服这两个障碍将需要相反的颗粒特性:粘膜渗透。
主要通过用粘液惰性聚合物稳定颗粒来实现,而细胞内生物利用度
遗传有效载荷依赖于粒子不稳定,迫切需要开发足够稳定的纳米粒子。
穿过CF粘液并到达气道细胞,但足够不稳定以促进遗传物质的内体逃逸
在细胞摄取后,我们将通过改变 LNP 核心的稳定性来满足这些标准,同时保持不变。
我们发现,用天然存在的类似物替代胆固醇可以改善粘液惰性 LNP 表面。
与临床上成功的含胆固醇 LNP 相比,细胞内基因传递提高了 200 倍。
假设基因转移的这一重大改进是通过增强 LNP (eLNP) 核心的修改而实现的
我们建议的 eLNP 核心结构的修改将能够实现拆卸、
mRNA 的内体逃逸和胞质传递,同时保持其粘膜惰性表面特性。
转化项目的目标是分析 CF 肺内的 LNP 结构和细胞内运输。
因此,目标是1)阐明和优化驱动内体的纳米载体的结构特征
eLNP 的运输和增强的基因传递,2) 测试和优化改变的核心结构的能力
增强对人类 CF 痰和最先进小鼠模型的粘液渗透性,以及 3) 评估
通过反复雾化对 CF 大鼠进行持续跨粘膜转染 CFTR mRNA,包括
这些研究将显着推进转化治疗,从而实现长期治疗。
恢复 CFTR 功能以阻止或逆转模型 CF 疾病进展。
通过胆固醇的小结构修饰(而不是修饰 LNP 表面涂层或阳离子)来提高颗粒稳定性
正如之前的研究一样,我们的发现将推动新的非病毒载体载体的转化。
穿过厚厚的粘液和内体屏障,传递有效治疗 CF 的基因。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gaurav Sahay其他文献
Gaurav Sahay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gaurav Sahay', 18)}}的其他基金
Mechanistic insights on structure, topology and radiation effects on RNA nanomedicines
RNA纳米药物的结构、拓扑和辐射效应的机理见解
- 批准号:
10587705 - 财政年份:2023
- 资助金额:
$ 66.67万 - 项目类别:
Developing gene editing platforms for retinal degeneration.
开发视网膜变性的基因编辑平台。
- 批准号:
10707472 - 财政年份:2022
- 资助金额:
$ 66.67万 - 项目类别:
Developing gene editing platforms for retinal degeneration.
开发视网膜变性的基因编辑平台。
- 批准号:
10522389 - 财政年份:2022
- 资助金额:
$ 66.67万 - 项目类别:
Developing gene editing platforms for retinal degeneration.
开发视网膜变性的基因编辑平台。
- 批准号:
10522389 - 财政年份:2022
- 资助金额:
$ 66.67万 - 项目类别:
Overcoming gene delivery barriers to the back of the eye
克服眼后部的基因传递障碍
- 批准号:
10058049 - 财政年份:2020
- 资助金额:
$ 66.67万 - 项目类别:
Overcoming gene delivery barriers to the back of the eye
克服眼后部的基因传递障碍
- 批准号:
10250546 - 财政年份:2020
- 资助金额:
$ 66.67万 - 项目类别:
Nanoparticles based mRNA delivery for treatment of cystic fibrosis
基于纳米颗粒的 mRNA 递送治疗囊性纤维化
- 批准号:
10360481 - 财政年份:2019
- 资助金额:
$ 66.67万 - 项目类别:
Nanoparticles based mRNA delivery for treatment of cystic fibrosis
基于纳米颗粒的 mRNA 递送治疗囊性纤维化
- 批准号:
10563195 - 财政年份:2019
- 资助金额:
$ 66.67万 - 项目类别:
Mechanisms of Intracellular trafficking and endosomal escape of nanoparticles for mRNA delivery
用于 mRNA 递送的纳米粒子的细胞内运输和内体逃逸机制
- 批准号:
9232538 - 财政年份:2017
- 资助金额:
$ 66.67万 - 项目类别:
相似国自然基金
胞裂蛋白Sep4介导菌丝顶端多极性生长调控灰葡萄孢侵染垫起始发育的机制
- 批准号:32372489
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
富集于上皮细胞膜顶端转录本magu-2的主动运输机制及功能研究
- 批准号:32300637
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
不同高度木本竹子因持续干旱而顶端枯死的生理机制
- 批准号:32360258
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
马铃薯匍匐茎顶端弯钩发育过程中赤霉素介导蛋白质磷酸化调控机制
- 批准号:32360091
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
拟南芥Class II TCP转录因子调控雌蕊顶端命运决定的分子机制
- 批准号:32300291
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Unveiling Functional Roles of Apical Surface Interactions Between Opposing Cell Layers
揭示相对细胞层之间顶端表面相互作用的功能作用
- 批准号:
10629101 - 财政年份:2023
- 资助金额:
$ 66.67万 - 项目类别:
Optically mapping tissue biomechanics during neural tube closure
神经管闭合过程中光学映射组织生物力学
- 批准号:
10540467 - 财政年份:2022
- 资助金额:
$ 66.67万 - 项目类别: