Optically mapping tissue biomechanics during neural tube closure

神经管闭合过程中光学映射组织生物力学

基本信息

  • 批准号:
    10540467
  • 负责人:
  • 金额:
    $ 10.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-03 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary This project features the development of advanced photonic technology to attack a major unmet challenge in developmental biology. Embryonic morphogenesis results from a complex combination of gene expression, biochemical signaling, and biomechanics. While methods to evaluate the first two are well established, our knowledge of biomechanics of the embryo morphogenesis is poorly understood because of the lack of technical approaches. Elucidating the biomechanics underlying morphogenesis is essential towards understanding the interplay between mechanical regulation, gene expression and tissue patterning that drive embryogenesis, and will potentially lead to exciting innovations in therapeutic strategies and diagnostics for developmental defects. Current technology for tissue elasticity measurement is slow and invasive, thus cannot measure mechanical properties within living 3D embryonic tissue in-situ. This project will develop an all-optical approach (line-scanning Brillouin microscopy, LSBM) to fulfill this unmet need. LSBM allows rapid 3D mapping of the elasticity of embryonic tissue in-situ with high-resolution, non-invasive, and non-contact manner. After technology validation, I will use this technique to address an open question of the development field related to the role of tissue biomechanics in the process of neural tube closure. The central hypothesis of this grant is that the neural tube defect is related to the altered mechanical properties of tissue. Specifically, I will investigate the role of cellular activities, such as apical constriction, in the stiffness change of tissue during different stages of neurulation and specific genetic factors contribute to the abnormal changes in tissue stiffness. This K25 award, through its training and research components, will provide me with the skills to create a strong biological part in my future research, in which I will utilize the enabling technological capabilities to address the important needs in developmental biology. The overall effort will hasten my transition to being an independent investigator at the forefront of the interdisciplinary interface of technology development and biomedical research.
项目概要 该项目的特点是开发先进的光子技术,以应对尚未解决的重大挑战 发育生物学。 胚胎形态发生是基因表达、生化信号传导和 生物力学。虽然评估前两种方法的方法已经很成熟,但我们对生物力学的了解 由于缺乏技术方法,人们对胚胎形态发生知之甚少。阐明 形态发生的生物力学对于理解力学之间的相互作用至关重要 驱动胚胎发生的调控、基因表达和组织模式,并有可能导致令人兴奋的结果 发育缺陷治疗策略和诊断的创新。当前的组织技术 弹性测量速度缓慢且具有侵入性,因此无法测量活体 3D 内的机械特性 胚胎组织原位。该项目将开发一种全光学方法(线扫描布里渊显微镜、 LSBM)来满足这一未满足的需求。 LSBM 可以快速绘制胚胎组织弹性的原位 3D 绘图 高分辨率、非侵入性、非接触方式。 经过技术验证后,我将使用该技术来解决相关开发领域的一个悬而未决的问题 组织生物力学在神经管闭合过程中的作用。本次资助的中心假设是 神经管缺陷与组织机械性能的改变有关。具体我会调查 不同阶段细胞活动(例如顶端收缩)在组织硬度变化中的作用 神经系统和特定遗传因素导致组织硬度异常变化。 这个 K25 奖项通过其培训和研究部分,将为我提供创建强大的技能 在我未来的研究中,我将利用有利的技术能力来解决生物学问题 发育生物学的重要需求。整体努力将加速我向独立的转变 技术开发和生物医学研究跨学科接口最前沿的研究者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jitao Zhang其他文献

Jitao Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jitao Zhang', 18)}}的其他基金

Rapid non-invasive biomechanical imaging of neural crest cell migration in vivo
体内神经嵴细胞迁移的快速非侵入性生物力学成像
  • 批准号:
    10811154
  • 财政年份:
    2023
  • 资助金额:
    $ 10.56万
  • 项目类别:
Optically mapping tissue biomechanics during neural tube closure
神经管闭合过程中光学映射组织生物力学
  • 批准号:
    10208917
  • 财政年份:
    2019
  • 资助金额:
    $ 10.56万
  • 项目类别:
Optically mapping tissue biomechanics during neural tube closure
神经管闭合过程中光学映射组织生物力学
  • 批准号:
    10790936
  • 财政年份:
    2019
  • 资助金额:
    $ 10.56万
  • 项目类别:

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

University of Wisconsin Prostate SPORE
威斯康星大学前列腺孢子
  • 批准号:
    10555398
  • 财政年份:
    2023
  • 资助金额:
    $ 10.56万
  • 项目类别:
Novel Implementation of Microporous Annealed Particle HydroGel for Next-generation Posterior Pharyngeal Wall Augmentation
用于下一代咽后壁增强的微孔退火颗粒水凝胶的新实现
  • 批准号:
    10727361
  • 财政年份:
    2023
  • 资助金额:
    $ 10.56万
  • 项目类别:
Machine Learning with Scintillation Photon Counting Detectors to Advance PET Imaging Performance
利用闪烁光子计数探测器进行机器学习以提高 PET 成像性能
  • 批准号:
    10742435
  • 财政年份:
    2023
  • 资助金额:
    $ 10.56万
  • 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
  • 批准号:
    10673513
  • 财政年份:
    2023
  • 资助金额:
    $ 10.56万
  • 项目类别:
New Hardware and Software Developments for Improving Prostate Metabolic MR Imaging
用于改善前列腺代谢 MR 成像的新硬件和软件开发
  • 批准号:
    10680043
  • 财政年份:
    2023
  • 资助金额:
    $ 10.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了