Microtubule regulation of actomyosin dynamics and force generation in T lymphocytes
T 淋巴细胞中肌动球蛋白动力学和力产生的微管调节
基本信息
- 批准号:9889158
- 负责人:
- 金额:$ 30.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-15 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:ActinsActomyosinAdaptor Signaling ProteinAdenomatous Polyposis Coli ProteinAdhesionsAdhesivesAntigensBindingBiochemicalBiologicalBiomechanicsCD8B1 geneCell CommunicationCell physiologyCellsCharacteristicsClonal ExpansionCoupledCouplingCuesCytoskeletonCytotoxic T-LymphocytesDevelopmentEnvironmentFamilyFilamentFunctional disorderFutureGelGenerationsGoalsGuanineGuanine Nucleotide Exchange FactorsHumanImmune responseImmune systemImmunologic Deficiency SyndromesImmunotherapyIn VitroInfectionInflammatoryInterleukin-12Interleukin-2InterventionLeadLinkLymphocyte ActivationLymphomaMaintenanceMechanicsMediatingMicrotubulesMolecularMovementMusMutationMyosin ATPaseOpticsPathway interactionsPlayPlus End of the MicrotubuleProcessProteinsReceptor SignalingRegulationRho-associated kinaseRoleSignal PathwaySignal TransductionSiteSmall Interfering RNAStimulusStructureSurfaceSystemT-Cell ActivationT-Cell ReceptorT-LymphocyteTechniquesTestingTherapeuticTraction Force MicroscopyTranslatingWorkadaptive immune responsebasecancer cellcell killingcytokinecytotoxic CD8 T cellsgenetic regulatory proteinhuman diseaseimmunological synapsein vivoknock-downmechanical forcemechanical propertiesmechanotransductionmutantneoplastic cellnovelnovel strategiesoptogeneticsphysical propertypolymerizationquantitative imagingresponsesensorspatiotemporaltransmission processtumor
项目摘要
Cell-cell interactions, mediated by adhesion and signaling receptors, are highly dynamic and subject to
cytoskeletal movements that impart substantial mechanical force at the interface. How cells combine mechanical
and biochemical signals to carry out specific functions is not well understood. Cells of the immune system present
a compelling context for studying force transmission and mechanosensing because they are structurally dynamic
and are sites of biochemical information transfer. T cell signaling is closely linked to the cytoskeleton, and it is
evident that forces applied by the actin cytoskeleton at the T cell receptor are transduced to biochemical signaling
leading to T cell activation. However, the molecular mechanisms by which these forces are regulated and how
they contribute to T cell function remain obscure. Here, we propose to dissect the interactions and activities of
proteins that reside at the intersection of actin and microtubule (MT) dynamics to advance our understanding of
force generation and mechanosensing in T cells. We hypothesize that dynamic microtubules modulate the T cell
cytoskeleton and proximal signaling both by 1) regulating actin polymerization dynamics in the lamellipodium
and the assembly of structures in the lamella and 2) regulating RhoA activation leading to myosin contractility
and force generation. Ultimately, we hypothesize that MT/actin interactions contribute to the ability of T cells to
adapt their activation and effector function in response to the stiffness of target cells. Our first goal will be to
examine the mechanisms by which MT regulate actin dynamics by probing the specific interactions between MT
and actin via +TIP proteins. We will combine optogenetic techniques with mutations to probe specific interactions
between MT and actin that regulate T cell activation. Our second goal will be to dissect the mechanisms that link
dynamic MTs to myosin driven contractile force generation. We will combine optogenetic control of RhoA
activation and inhibition with quantitative imaging and traction force microscopy to elucidate the spatiotemporal
characteristics of RhoA activation during T cell activation. We will use novel sensors for GEF-H1 activity and
mutations to establish its role in MT/actin coupling, force generation and T cell signaling. Finally, we will perform
studies with mouse cells in a functional context to test the hypothesis that regulation of actomyosin dynamics
and contractility tunes the mechanical coordination of cytotoxic T lymphocyte activation and their efficacy in
killing cancer cells. Our proposed studies will clarify how mechanical stimuli and biochemical signaling are
coupled during the immune response. Furthermore, the specific pathways studied in this proposal are linked to
a number of immunodeficiencies and lymphoma progression and thus will help lead to a better understanding of
how their dysfunction can contribute to human disease, thus providing new targets for intervention in immune
therapy.
由粘附和信号传导受体介导的细胞间相互作用是高度动态的并且受到
细胞骨架运动在界面处施加大量机械力。细胞如何结合机械
执行特定功能的生化信号尚不清楚。存在免疫系统细胞
为研究力传递和机械传感提供了令人信服的背景,因为它们在结构上是动态的
是生化信息传递的场所。 T 细胞信号传导与细胞骨架密切相关,
显然,肌动蛋白细胞骨架对 T 细胞受体施加的力被转化为生化信号传导
导致T细胞活化。然而,调节这些力的分子机制以及如何调节
它们对 T 细胞功能的贡献仍不清楚。在这里,我们建议剖析以下方面的相互作用和活动:
位于肌动蛋白和微管 (MT) 动力学交叉点的蛋白质,以增进我们对
T 细胞中的力产生和机械传感。我们假设动态微管调节 T 细胞
细胞骨架和近端信号传导均通过 1) 调节片状足中的肌动蛋白聚合动力学
以及板层结构的组装和 2) 调节 RhoA 激活导致肌球蛋白收缩性
和力的产生。最终,我们假设 MT/肌动蛋白相互作用有助于 T 细胞的能力
调整它们的激活和效应器功能以响应靶细胞的硬度。我们的首要目标是
通过探究 MT 之间的特定相互作用来研究 MT 调节肌动蛋白动力学的机制
和肌动蛋白通过+TIP蛋白。我们将结合光遗传学技术和突变来探测特定的相互作用
MT 和肌动蛋白之间调节 T 细胞活化。我们的第二个目标是剖析联系机制
动态 MT 到肌球蛋白驱动的收缩力产生。我们将结合RhoA的光遗传学控制
通过定量成像和牵引力显微镜的激活和抑制来阐明时空
T细胞激活过程中RhoA激活的特征。我们将使用新颖的传感器来检测 GEF-H1 的活性
突变以确定其在 MT/肌动蛋白偶联、力产生和 T 细胞信号传导中的作用。最后我们将表演
在功能环境中对小鼠细胞进行研究,以检验肌动球蛋白动力学调节的假设
和收缩性调节细胞毒性 T 淋巴细胞激活的机械协调及其在
杀死癌细胞。我们提出的研究将阐明机械刺激和生化信号如何发挥作用
在免疫反应期间耦合。此外,该提案中研究的具体途径与
一些免疫缺陷和淋巴瘤进展,因此将有助于更好地了解
它们的功能障碍如何导致人类疾病,从而为免疫干预提供新的目标
治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arpita Upadhyaya其他文献
Arpita Upadhyaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arpita Upadhyaya', 18)}}的其他基金
Cellular mechanotransduction - from the immune response to transcriptional regulation
细胞机械转导 - 从免疫反应到转录调节
- 批准号:
10693137 - 财政年份:2022
- 资助金额:
$ 30.78万 - 项目类别:
Cellular mechanotransduction - from the immune response to transcriptional regulation
细胞机械转导 - 从免疫反应到转录调节
- 批准号:
10406710 - 财政年份:2022
- 资助金额:
$ 30.78万 - 项目类别:
Supplement request for Cellular mechanotransduction - from the immune response to transcriptional regulation
细胞机械转导的补充请求 - 从免疫反应到转录调控
- 批准号:
10799068 - 财政年份:2022
- 资助金额:
$ 30.78万 - 项目类别:
Microtubule regulation of actomyosin dynamics and force generation in T lymphocytes
T 淋巴细胞中肌动球蛋白动力学和力产生的微管调节
- 批准号:
10115767 - 财政年份:2019
- 资助金额:
$ 30.78万 - 项目类别:
Microtubule regulation of actomyosin dynamics and force generation in T lymphocytes
T 淋巴细胞中肌动球蛋白动力学和力产生的微管调节
- 批准号:
10359737 - 财政年份:2019
- 资助金额:
$ 30.78万 - 项目类别:
Nanotopographic modulation of B cell signaling activation
B 细胞信号传导激活的纳米拓扑调节
- 批准号:
9281650 - 财政年份:2016
- 资助金额:
$ 30.78万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
鱼糜肌动球蛋白的增效转化及其氧化控制分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
低频超声场下肉品肌动球蛋白敏感结构域及其构象变化的作用机制
- 批准号:31901612
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于飞秒激光微纳手术研究亚细胞尺度分子马达网络调控细胞三维运动的生物物理机理
- 批准号:31701215
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Microtubule regulation of actomyosin dynamics and force generation in T lymphocytes
T 淋巴细胞中肌动球蛋白动力学和力产生的微管调节
- 批准号:
10115767 - 财政年份:2019
- 资助金额:
$ 30.78万 - 项目类别:
Microtubule regulation of actomyosin dynamics and force generation in T lymphocytes
T 淋巴细胞中肌动球蛋白动力学和力产生的微管调节
- 批准号:
10359737 - 财政年份:2019
- 资助金额:
$ 30.78万 - 项目类别:
Using micropost arrays to measure traction forces during dendritic cell motility
使用微柱阵列测量树突状细胞运动过程中的牵引力
- 批准号:
8583289 - 财政年份:2013
- 资助金额:
$ 30.78万 - 项目类别: