Cellular mechanotransduction - from the immune response to transcriptional regulation
细胞机械转导 - 从免疫反应到转录调节
基本信息
- 批准号:10406710
- 负责人:
- 金额:$ 23.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:ActinsAddressAdhesionsBindingBiochemicalBiophysical ProcessCell CommunicationCell NucleusCell physiologyCellsChromatinCoupledCuesCytoskeletonCytotoxic T-LymphocytesDataDevelopmentDiseaseDisease MarkerEnvironmentFive-Year PlansFundingFunding MechanismsGene ExpressionGene Expression RegulationGenerationsGenetic TranscriptionGenomicsGoalsImage AnalysisImmuneImmune responseImmunotherapyInterventionKineticsLymphocyte ActivationMeasurementMechanicsMediatingMethodsMicrotubulesMolecularMovementNational Institute of General Medical SciencesNatureNuclear Hormone ReceptorsProcessReceptor SignalingResearchRisk FactorsSignal TransductionT cell regulationT-Cell ActivationT-Cell ReceptorT-LymphocyteTimeTissuesTranscriptional RegulationVisualizationadaptive immune responsecancer cellcell killingcytokinedensitydesigndiagnostic toolflexibilitygenome-widehigh resolution imagingmalignant breast neoplasmmathematical modelmechanical forcemechanical propertiesmechanical signalmechanical stimulusmechanotransductionneoplastic cellnovel therapeuticsprogramsquantitative imagingresponsesingle moleculetooltranscription factortumor progressionwound healing
项目摘要
The overall goal of the research in my lab is to define the molecular mechanisms and functional consequences
of cellular mechanotransduction – or how cells sense the mechanical properties of their microenvironment and
launch appropriate functional responses. Cell-cell interactions, mediated by adhesion and signaling receptors,
are highly dynamic and subject to cytoskeletal movements that impart substantial mechanical force at the
interface. How cells combine mechanical and biochemical signals to carry out specific functions is not well
understood. Our lab tackles this question in two contexts – the immune response in T cells and regulation of
gene expression - using a combination of high (and super)-resolution imaging, force measurements,
quantitative image analysis, genomics and mathematical modeling. As part of our NIGMS-funded research, we
have recently demonstrated that T cell activation requires a close coordination of the actin and microtubule
cytoskeletons in order to generate forces at the T cell receptor, which are transduced to biochemical signaling
leading to T cell activation. We have shown that cytokine stimulation leads to modulation of cytoskeletal
dynamics and force generation in cytotoxic T cells, facilitating the cytolytic response. We have also developed
new methods for analysis of single molecule tracking data, which we have applied to study the dynamics and
binding kinetics of transcription factors and relate them to genome-wide measurements. Over the next five
years, we plan to continue to address the molecular mechanisms that mediate actin/microtubule crosstalk in T
cells for the control of RhoA-mediated forces and how these cytoskeletal forces tune the mechanical
coordination of cytotoxic T lymphocyte activation and their efficacy in killing cancer cells. Taking advantage of
the flexible nature of the R35 funding mechanism, we will establish a new line of research that builds on our
technological capabilities to examine how mechanical cues are relayed to the nucleus to regulate gene
expression in a functionally appropriate manner and how mechanical cues interact with tissue-specific cues.
We will use advanced tools for real-time visualization of nuclear hormone receptor and target gene
transcription dynamics to interrogate 1) how substrate stiffness regulates chromatin accessibility and
modulates the mobility of transcription factors and co-activators, with a particular focus on nuclear hormone
receptors and 2) how biophysical mechanisms transduce changes in the mechanical environment into
alterations in gene expression dynamics. Our research program will 1) elucidate how mechanical stimuli and
biochemical signaling are coupled to orchestrate the adaptive immune response and 2) enable fundamental
understanding of how mechanical properties of the microenvironment modulate gene expression, with
implications for designing new targets for intervention in immune therapy and breast cancer.
我实验室研究的总体目标是定义分子机制和功能后果
细胞机械转导的研究——或者细胞如何感知其微环境的机械特性以及
启动适当的功能反应,由粘附和信号受体介导,
具有高度动态性,并受到细胞骨架运动的影响,从而在细胞骨架上施加大量机械力
细胞如何结合机械信号和生化信号来执行特定功能尚不清楚。
我们的实验室在两个方面解决了这个问题——T 细胞的免疫反应和 T 细胞的调节。
基因表达——结合使用高分辨率(和超)分辨率成像、力测量、
作为 NIGMS 资助研究的一部分,我们进行了定量图像分析、基因组学和数学建模。
最近证明 T 细胞激活需要肌动蛋白和微管的密切协调
细胞骨架,以便在 T 细胞受体上产生力,该力被转导为生化信号传导
我们已经证明细胞因子刺激会导致细胞骨架的调节。
我们还开发了细胞毒性 T 细胞的动力学和力生成,促进细胞溶解反应。
分析单分子追踪数据的新方法,我们已将其应用于研究动力学和
转录因子的结合动力学并将其与接下来的五年内的全基因组测量联系起来。
多年来,我们计划继续解决 T 中介导肌动蛋白/微管串扰的分子机制
细胞控制 RhoA 介导的力以及这些细胞骨架力如何调节机械力
细胞毒性 T 淋巴细胞激活的协调及其杀死癌细胞的功效。
鉴于 R35 资助机制的灵活性,我们将在我们的基础上建立一条新的研究路线
研究机械信号如何传递到细胞核以调节基因的技术能力
以功能适当的方式表达以及机械线索如何与组织特异性线索相互作用。
我们将使用先进的工具对核激素受体和靶基因进行实时可视化
转录动力学询问 1) 底物硬度如何调节染色质可及性和
调节转录因子和共激活因子的流动性,特别关注核激素
受体和 2) 生物物理机制如何将机械环境的变化转化为
我们的研究计划将 1) 阐明机械刺激如何改变
生化信号耦合以协调适应性免疫反应,并且 2) 实现基本的
了解微环境的机械特性如何调节基因表达,
设计干预免疫治疗和乳腺癌新靶点的意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arpita Upadhyaya其他文献
Arpita Upadhyaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arpita Upadhyaya', 18)}}的其他基金
Cellular mechanotransduction - from the immune response to transcriptional regulation
细胞机械转导 - 从免疫反应到转录调节
- 批准号:
10693137 - 财政年份:2022
- 资助金额:
$ 23.18万 - 项目类别:
Supplement request for Cellular mechanotransduction - from the immune response to transcriptional regulation
细胞机械转导的补充请求 - 从免疫反应到转录调控
- 批准号:
10799068 - 财政年份:2022
- 资助金额:
$ 23.18万 - 项目类别:
Microtubule regulation of actomyosin dynamics and force generation in T lymphocytes
T 淋巴细胞中肌动球蛋白动力学和力产生的微管调节
- 批准号:
10115767 - 财政年份:2019
- 资助金额:
$ 23.18万 - 项目类别:
Microtubule regulation of actomyosin dynamics and force generation in T lymphocytes
T 淋巴细胞中肌动球蛋白动力学和力产生的微管调节
- 批准号:
10359737 - 财政年份:2019
- 资助金额:
$ 23.18万 - 项目类别:
Microtubule regulation of actomyosin dynamics and force generation in T lymphocytes
T 淋巴细胞中肌动球蛋白动力学和力产生的微管调节
- 批准号:
9889158 - 财政年份:2019
- 资助金额:
$ 23.18万 - 项目类别:
Nanotopographic modulation of B cell signaling activation
B 细胞信号传导激活的纳米拓扑调节
- 批准号:
9281650 - 财政年份:2016
- 资助金额:
$ 23.18万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mechanical Modulation of Cell Migrations by DNA Nanoassemblies
DNA 纳米组件对细胞迁移的机械调节
- 批准号:
10659333 - 财政年份:2023
- 资助金额:
$ 23.18万 - 项目类别:
Understanding A Molecular Cascade That Drives Neutrophil Mediated Pathology In Arthritis
了解驱动中性粒细胞介导的关节炎病理学的分子级联
- 批准号:
10658202 - 财政年份:2023
- 资助金额:
$ 23.18万 - 项目类别:
Cytoskeleton-mediated regulation of insulin secretion hot spots in pancreatic beta cells
细胞骨架介导的胰腺β细胞胰岛素分泌热点的调节
- 批准号:
10679903 - 财政年份:2023
- 资助金额:
$ 23.18万 - 项目类别:
Predictive multi-scale model of focal adhesion-based durotaxis
基于粘着斑的 durotaxis 的预测多尺度模型
- 批准号:
10562825 - 财政年份:2023
- 资助金额:
$ 23.18万 - 项目类别: