Nanotopographic modulation of B cell signaling activation
B 细胞信号传导激活的纳米拓扑调节
基本信息
- 批准号:9281650
- 负责人:
- 金额:$ 18.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsActomyosinAntibody ResponseAntigen PresentationAntigen-Presenting CellsAntigensB-Cell ActivationB-Cell Receptor BindingB-LymphocytesBehaviorBiologicalBiomedical EngineeringCellsCellular MorphologyCommunicable DiseasesComplexCuesCytoskeletonDendritic CellsDevelopmentDevicesDissectionEngineeringEnvironmentGoalsImmuneImmune System DiseasesImmune responseImmunityImmunotherapyKnowledgeLigandsLightLiquid substanceLymphocyteMalignant NeoplasmsMechanicsMediatingMembraneMethodsMorphologyMovementMyosin ATPaseNanostructuresNanotopographyNatureOpticsPatternPropertyProteinsReceptor ActivationReceptor SignalingReceptors, Antigen, B-CellRegulationRegulatory PathwayResolutionRoleSignal TransductionStem cellsSurfaceTechnologyTestingTherapeuticVaccinesWorkbasecell behaviorcellular imagingdesignfluorescence imaginggenetic regulatory proteinhigh resolution imagingin vivoinnovationinsightknockout genelithographylive cell imagingmicrobialnanonanoparticlenanopatternnanosensorsnanostructurednovelpathogenphysical propertypreventreceptorresponsesmall molecule inhibitorvaccine development
项目摘要
B cell-mediated antibody responses are an essential component of immunity and the main target of vaccine
development. B cell signaling activation is triggered by the binding of B cell receptors (BCR) with antigen
displayed on the surface of professional antigen presenting cells. Although soluble antigen are able to activate
B cells, recent studies have shown that surface anchored antigens are significantly more efficient in triggering
B cell activation. Consequently, the physical nature of antigen presentation and the mechanical environment of
B cells are likely important for BCR activation. In particular, B cells encounter antigen on APC, which possess
complex surfaces with convoluted topographies, a fluid membrane and deformable cell bodies. Historically,
planar substrates have been used to study immune cell signaling and investigate the mechanisms behind
signal initiation. Previous work has shown that many behaviors of adherent and stem cells, such as
morphology, movement and differentiation, are modulated by surface topography. These studies demonstrate
that cells are able to respond to topographical cues, which in turn influences cell signaling. However, the
question of topographical modulation of signaling in immune cells has not been previously studied. Our
preliminary studies suggest that B cell signaling and actin dynamics are both influenced by the
nanotopography of the antigen-presenting surface. The central hypothesis of this project is that substrate
topography influences B signaling and activation. Furthermore, cytoskeletal dynamics at the interface
enable the cell to sense topography in order to generate an appropriate signaling response. We will test
this hypothesis by using novel nanotopographic surfaces that allow high resolution fluorescence imaging to
examine actin cytoskeletal dynamics, BCR signaling and actin regulators in B cells. Aim 1 will examine the
effects of substrate nanotopography on B-cell morphology, actin reorganization and signaling activation. We
will use nonlinear optical lithography to fabricate novel surfaces with nanotopographic patterns on materials
that permit high-resolution live cell imaging of the cell-substrate interface. Using these substrates, we will
establish that substrate topography is an important modulator of B cell signaling and cytoskeletal dynamics.
Aim 2 will define actin remodeling and their upstream regulators that are critical for topography sensing and the
control of BCR signaling. To do so, we will perturb the actomyosin cytoskeleton using small-molecule inhibitors
and gene knockout of regulatory proteins including WASP and N-WASP in modulating topographic sensing in
B cells via actin remodeling. We will further test the role of curvature sensing proteins in topographic sensing
by the control of membrane curvature. These studies will provide important new insights into how actin
regulatory pathways mediate topographic sensing, giving us another means of tuning B cell signaling with
nanotopography. More broadly, this work will shed light on mechanisms by which cells sense their environment
by surface receptors, which has considerable implications for biomedicine.
B 细胞介导的抗体反应是免疫的重要组成部分,也是疫苗的主要目标
发展。 B 细胞信号传导激活是由 B 细胞受体 (BCR) 与抗原的结合触发的
显示在专业抗原呈递细胞的表面。虽然可溶性抗原能够激活
B 细胞,最近的研究表明,表面锚定抗原在触发方面明显更有效
B细胞激活。因此,抗原呈递的物理性质和机械环境
B 细胞可能对 BCR 激活很重要。特别是,B 细胞遇到 APC 上的抗原,APC 具有
具有复杂地形、流体膜和可变形细胞体的复杂表面。从历史上看,
平面基底已用于研究免疫细胞信号传导并研究其背后的机制
信号启动。先前的工作表明贴壁细胞和干细胞的许多行为,例如
形态、运动和分化受表面形貌的调节。这些研究表明
细胞能够对地形信号做出反应,进而影响细胞信号传导。然而,
免疫细胞信号传导的拓扑调节问题此前尚未被研究过。我们的
初步研究表明 B 细胞信号传导和肌动蛋白动力学均受
抗原呈递表面的纳米形貌。该项目的中心假设是底物
地形影响 B 信号传导和激活。此外,界面处的细胞骨架动力学
使细胞能够感知地形以产生适当的信号反应。我们将测试
这一假设通过使用新型纳米形貌表面来实现高分辨率荧光成像
检查 B 细胞中的肌动蛋白细胞骨架动力学、BCR 信号传导和肌动蛋白调节因子。目标 1 将检查
基底纳米形貌对 B 细胞形态、肌动蛋白重组和信号激活的影响。我们
将使用非线性光学光刻技术在材料上制造具有纳米形貌图案的新颖表面
允许对细胞-基质界面进行高分辨率活细胞成像。使用这些基材,我们将
确定底物拓扑结构是 B 细胞信号传导和细胞骨架动力学的重要调节剂。
目标 2 将定义肌动蛋白重塑及其上游调节因子,这些调节因子对于地形传感和
BCR 信号传导的控制。为此,我们将使用小分子抑制剂扰乱肌动球蛋白细胞骨架
以及调节蛋白(包括 WASP 和 N-WASP)的基因敲除在调节地形传感中的作用
B 细胞通过肌动蛋白重塑。我们将进一步测试曲率传感蛋白在地形传感中的作用
通过膜曲率的控制。这些研究将为肌动蛋白如何发挥作用提供重要的新见解。
调节通路介导地形传感,为我们提供了另一种调节 B 细胞信号传导的方法
纳米形貌。更广泛地说,这项工作将揭示细胞感知环境的机制
通过表面受体,这对生物医学具有相当大的影响。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Subcellular topography modulates actin dynamics and signaling in B-cells.
亚细胞拓扑调节 B 细胞中的肌动蛋白动力学和信号传导。
- DOI:
- 发表时间:2018-07-15
- 期刊:
- 影响因子:3.3
- 作者:Ketchum, Christina M;Sun, Xiaoyu;Suberi, Alexandra;Fourkas, John T;Song, Wenxia;Upadhyaya, Arpita
- 通讯作者:Upadhyaya, Arpita
Mechanosensing in the immune response.
免疫反应中的机械传感。
- DOI:10.1016/j.semcdb.2017.08.031
- 发表时间:2017-11
- 期刊:
- 影响因子:7.3
- 作者:Upadhyaya A
- 通讯作者:Upadhyaya A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arpita Upadhyaya其他文献
Arpita Upadhyaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arpita Upadhyaya', 18)}}的其他基金
Cellular mechanotransduction - from the immune response to transcriptional regulation
细胞机械转导 - 从免疫反应到转录调节
- 批准号:
10693137 - 财政年份:2022
- 资助金额:
$ 18.74万 - 项目类别:
Cellular mechanotransduction - from the immune response to transcriptional regulation
细胞机械转导 - 从免疫反应到转录调节
- 批准号:
10406710 - 财政年份:2022
- 资助金额:
$ 18.74万 - 项目类别:
Supplement request for Cellular mechanotransduction - from the immune response to transcriptional regulation
细胞机械转导的补充请求 - 从免疫反应到转录调控
- 批准号:
10799068 - 财政年份:2022
- 资助金额:
$ 18.74万 - 项目类别:
Microtubule regulation of actomyosin dynamics and force generation in T lymphocytes
T 淋巴细胞中肌动球蛋白动力学和力产生的微管调节
- 批准号:
10115767 - 财政年份:2019
- 资助金额:
$ 18.74万 - 项目类别:
Microtubule regulation of actomyosin dynamics and force generation in T lymphocytes
T 淋巴细胞中肌动球蛋白动力学和力产生的微管调节
- 批准号:
10359737 - 财政年份:2019
- 资助金额:
$ 18.74万 - 项目类别:
Microtubule regulation of actomyosin dynamics and force generation in T lymphocytes
T 淋巴细胞中肌动球蛋白动力学和力产生的微管调节
- 批准号:
9889158 - 财政年份:2019
- 资助金额:
$ 18.74万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
鱼糜肌动球蛋白的增效转化及其氧化控制分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
低频超声场下肉品肌动球蛋白敏感结构域及其构象变化的作用机制
- 批准号:31901612
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于飞秒激光微纳手术研究亚细胞尺度分子马达网络调控细胞三维运动的生物物理机理
- 批准号:31701215
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目