STAT3 activation in astrocytes as a driver of neurovascular dysfunction in Alzheimer's disease and related dementias
星形胶质细胞中 STAT3 的激活是阿尔茨海默病和相关痴呆症神经血管功能障碍的驱动因素
基本信息
- 批准号:10785691
- 负责人:
- 金额:$ 17.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-19 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdoptedAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAlzheimer&aposs disease patientAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskAstrocytesAutopsyBlood VesselsBrainBrain InjuriesCellsCerebrovascular systemCoculture TechniquesDementiaDiseaseEndothelial CellsExhibitsFunctional disorderGoalsHealthHomeostasisHumanImaging TechniquesInflammatoryInjuryLinkMicrotomyMolecularMorphologyMusNerve DegenerationOutcomePathogenicityPhenotypeResearchResolutionRoleSTAT3 geneSerine Proteinase InhibitorsSignal TransductionSiteSliceStimulusStrokeTransgenic MiceTraumaTreesWorkalpha 1-Antichymotrypsinblood-brain barrier disruptionblood-brain barrier functionbrain endothelial cellbrain tissuecell typechymotrypsinchymotrypsin Acohortdementia riskhuman tissuein vitro Modelin vivoneurovascularprospectiverepairedresponsesingle-cell RNA sequencingspatial relationshipsynergismtranscription factortreatment strategy
项目摘要
Project summary
Alzheimer’s disease (AD) and related dementias (ADRD) are exacerbated by neurovascular dysfunction.
Astrocytes are key contributors to neurovascular health and blood-brain barrier (BBB) function. In response to
pathogenic stimuli, astrocytes adopt a “reactive” phenotype generally characterized by morphological changes.
Recent research has shown that reactive astrocytes can adopt a diverse spectrum of molecular identities, but
the interplay between these different subtypes of reactive astrocytes and the brain vasculature remains unclear.
Indeed, some studies have shown that reactive astrocytes negatively influence BBB function, while others have
shown that reactive astrocytes are vital to neurovascular repair after injury. Most of these studies have been
performed in the context of stroke or physical trauma, and while there are some emerging studies at single-cell
resolution on reactive astrocyte states in ADRDs, there is little to no information on how these different states
may directly contribute to neurovascular dysfunction. Herein, we propose to investigate how STAT3 activation
in astrocytes drives neurovascular dysfunction in ADRDs. In preliminary work, using thin sections from
postmortem human brain tissue, we have shown that AD patients have significantly increased numbers of
STAT3-activated astrocytes and inflamed blood vessels. In a human in vitro model of astrocytes cocultured with
brain endothelial cells, we have shown that inflammatory stimuli activate STAT3 signaling in astrocytes, which
leads to BBB disruption, and inhibition of STAT3 activation in astrocytes mitigates these outcomes. Further,
using combinations of the human in vitro model, ex vivo mouse cortical slice cultures, and in vivo manipulations,
we have shown that alpha 1-antichymotrypsin (ACT)—a STAT3-regulated serine protease inhibitor—contributes
directly to neurovascular dysfunction. Moving forward, we will build on these promising results in the following
manner. In Aim 1, we will expand our human tissue studies into larger ADRD cohorts and employ advanced
imaging techniques to quantify three-dimensional spatial relationships between STAT3-activated astrocytes and
sites of vascular damage. In Aim 2, we will inhibit STAT3 signaling in astrocytes within transgenic mouse models
of ADRD and evaluate longitudinal alterations to neurovascular dysfunction; these assessments will include
single-cell RNA sequencing to characterize molecular changes to endothelial cells along the entire vascular tree.
In Aim 3, we will causally link astrocyte-derived ACT to neurovascular dysfunction in transgenic mouse models
of ADRD, as well as characterize prospectively synergy between ACT and APOE, which have known
connections in AD and dementia risk. Collectively, outcomes from this work will define the mechanistic roles of
STAT3-activated astrocytes in neurovascular dysfunction associated with ADRD and identify potential avenues
for targeting astrocytes as an ADRD treatment strategy.
项目摘要
阿尔茨海默氏病(AD)和相关痴呆症(ADRD)因神经血管功能障碍而加剧。
星形胶质细胞是神经血管健康和血脑屏障(BBB)功能的关键因素。响应
致病性刺激,星形胶质细胞采用通常以形态变化为特征的“反应性”表型。
最近的研究表明,反应性星形胶质细胞可以采用各种分子身份,但
这些不同的反应性星形胶质细胞和脑脉管系统之间的相互作用尚不清楚。
实际上,一些研究表明,反应性星形胶质细胞对BBB功能产生负面影响,而其他研究则具有
表明反应性星形胶质细胞受伤后对神经血管修复至关重要。这些研究大多数是
在中风或身体创伤的背景下进行,虽然单细胞有一些新兴的研究
关于反应性星形胶质细胞状态的分辨率,几乎没有关于这些不同状态的信息
可能直接导致神经血管功能障碍。本文中,我们建议研究STAT3如何激活
在星形胶质细胞中驱动ADRD的神经血管功能障碍。在初步工作中,使用来自
尸体后人脑组织,我们已经表明,AD患者的数量显着增加
STAT3激活的星形胶质细胞和发炎的血管。在人类体外模型的星形胶质细胞模型中
脑内皮细胞,我们已经表明炎症刺激激活了星形胶质细胞中的STAT3信号传导,这些信号传导
导致BBB破坏,并抑制星形胶质细胞中的STAT3激活可减轻这些结果。更远,
使用人体内模型的组合,离体小鼠皮质切片培养物和体内操作,
我们已经表明α1-抗胰蛋白酶蛋白酶(ACT) - STAT3调节的丝氨酸蛋白酶抑制剂 - 贡献者
直接到神经血管功能障碍。向前迈进,我们将基于这些承诺的结果
方式。在AIM 1中,我们将将人类组织研究扩展到更大的ADRD队oo群,员工高级
量化STAT3激活星形胶质细胞和的三维空间关系的成像技术
血管损伤部位。在AIM 2中,我们将抑制转基因小鼠模型中星形胶质细胞中的STAT3信号传导
ADRD并评估神经血管功能障碍的纵向改变;这些评估将包括
单细胞RNA测序以表征沿整个血管树向内皮细胞的分子变化。
在AIM 3中,我们将在转基因小鼠模型中为星形胶质细胞衍生的ACT与神经血管功能障碍联系起来
ADRD的特征以及ACT和Apoe之间的前瞻性协同作用
AD和痴呆症风险的连接。总的来说,这项工作的结果将定义
与ADRD相关的神经血管功能障碍的STAT3激活星形胶质细胞并识别潜在的途径
用于将星形胶质细胞作为ADRD治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ethan Lippmann其他文献
Ethan Lippmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ethan Lippmann', 18)}}的其他基金
STAT3 activation in astrocytes as a driver of neurovascular dysfunction in Alzheimer's disease and related dementias
星形胶质细胞中 STAT3 的激活是阿尔茨海默病和相关痴呆症神经血管功能障碍的驱动因素
- 批准号:
10562131 - 财政年份:2022
- 资助金额:
$ 17.02万 - 项目类别:
Perivascular fibroblasts, vascular fibrosis, and their contributions to cerebral amyloid angiopathy
血管周围成纤维细胞、血管纤维化及其对脑淀粉样血管病的影响
- 批准号:
10577536 - 财政年份:2022
- 资助金额:
$ 17.02万 - 项目类别:
iPSC-derived neurovascular tissue model of cerebral amyloiad angiopathy
iPSC 衍生的脑淀粉样血管病神经血管组织模型
- 批准号:
10044329 - 财政年份:2020
- 资助金额:
$ 17.02万 - 项目类别:
Modeling spinal cord axis patterning with human pluripotent stem cells
用人类多能干细胞模拟脊髓轴模式
- 批准号:
8644522 - 财政年份:2013
- 资助金额:
$ 17.02万 - 项目类别:
Modeling spinal cord axis patterning with human pluripotent stem cells
用人类多能干细胞模拟脊髓轴模式
- 批准号:
8852002 - 财政年份:2013
- 资助金额:
$ 17.02万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 17.02万 - 项目类别:
Robust Precision Mapping of Cortical and Subcortical Brain Metabolic Signatures in AD
AD 中大脑皮层和皮层下代谢特征的稳健精确绘图
- 批准号:
10746348 - 财政年份:2023
- 资助金额:
$ 17.02万 - 项目类别:
4D Flow MRI in Assessment of True Severe Low-Gradient Aortic Stenosis
4D Flow MRI 评估真正的严重低梯度主动脉瓣狭窄
- 批准号:
10735953 - 财政年份:2023
- 资助金额:
$ 17.02万 - 项目类别:
SCH: Novel and Interpretable Statistical Learning for Brain Images in AD/ADRDs
SCH:针对 AD/ADRD 大脑图像的新颖且可解释的统计学习
- 批准号:
10816764 - 财政年份:2023
- 资助金额:
$ 17.02万 - 项目类别: