iPSC-derived Neurovascular Organoids
iPSC 衍生的神经血管类器官
基本信息
- 批准号:10683029
- 负责人:
- 金额:$ 10.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcademic Medical CentersAcuteAlzheimer&aposs DiseaseAlzheimer&aposs disease riskAnimal ModelAnimalsArchitectureBiocompatible MaterialsBiological AssayBiological ModelsBiomimeticsBlood - brain barrier anatomyBlood VesselsBlood capillariesBrainBrain regionCell Culture TechniquesCell LineCellsCentral Nervous System DiseasesCerebral small vessel diseaseChronicComplementCoupledCuesDataDementiaDevelopmentDiseaseDisease modelDrug EvaluationDrug toxicityDrug usageElectrophysiology (science)Endothelial CellsEngineeringEpitopesExhibitsFunctional disorderGelGelatinGenetic VariationGenotypeGrowthHealthHumanHuman BiologyHydrogelsImageImpaired cognitionIn VitroInduced pluripotent stem cell derived neuronsInjuryInvestigationMethacrylatesMicrofabricationMicrovascular DysfunctionModelingMolecularN-CadherinNerve DegenerationNeuraxisNeurodegenerative DisordersNeurogliaNeurologicNeuronsOrganoidsOutcome MeasurePatternPeptidesPericytesPhysiologicalPolymersProsencephalonRadialReperfusion InjuryResourcesSignal TransductionSliceStructureSynapsesSystemTechniquesTechnologyTherapeuticTimeTissue constructsTissuesToxicologyUniversitiesVariantVascularizationWorkangiogenesisblood damageblood-brain barrier disruptionblood-brain barrier functionbrain endothelial celldensitydisease mechanisms studydisease phenotypedrug discoverydrug efficacyfunctional outcomesgenetic risk factorhuman diseasehydrogel scaffoldimprovedin vitro Modelin vivoin vivo Modelinduced pluripotent stem cellinduced pluripotent stem cell technologymimeticsmouse modelneural circuitneural patterningneurovascularneurovascular injurynovelpreventprospectiverelating to nervous systemresponsestem cell differentiationtwo-dimensionalvascular cognitive impairment and dementiavascular contributions
项目摘要
Summary statement
Robust model systems are essential for understanding human disease. While Alzheimer’s disease can be studied using in vivo models that have become more representative in recent years (e.g. by introducing natural genetic diversity and humanized APOE variants into existing Alzheimer’s mouse models), the ability to study vascular contributions to cognitive impairment and dementia (VCID) and cerebral small vessel disease (SVD) remains difficult. Indeed, the molecular mechanisms underlying VCID and SVD remain mostly unknown, and in vivo models for these diseases are lacking. A representative human in vitro model would therefore be beneficial to complement in vivo systems and improve understanding of vascular contributions to neurodegeneration. The development of human induced pluripotent stem cell (iPSC) technology has increased the utility of in vitro central nervous system (CNS) models, which have gradually progressed from isolated two-dimensional cell cultures to multi-cellular three-dimensional assemblies that better recapitulate the organization and architecture of specific brain regions. However, these human ‘brain organoids’ still have significant deficits. Notably, cortical organoids exhibit improperly organized laminar architectures and lack perfusable microvasculature with blood-brain barrier (BBB) function. These deficits limit the representativeness of using brain organoids to understand the mechanisms of VCID and SVD. In this proposed project, we will develop a biomimetic brain organoid platform with robust neurovascular function. Aim 1 of this proposal will characterize the organization and maturation of cortica. organoids grown in a novel biomaterial that mimics cues provided by radial glia to help guide laminar patterning. Aim 2 will focus on integrating brain endothelial cells and pericytes with the cortical organoids to develop perfusable microvasculature throughout the tissue construct, thereby generating the ‘neurovascular organoid’ platform. Aim 3 will then validate the representativeness of the neurovascular organoids by subjecting them to acute and chronic injuries known to damage the BBB; in particular, iPSCs with defined APOE genotype will be used to assess onset and progression of neurovascular dysfunction in response to this well-established genetic risk factor. Overall, this project will establish a human in vitro model of the vascularized cortex that is expected to have utility for unraveling the mechanisms of VCID and SVD.
摘要声明
强大的模型系统对于理解人类疾病至关重要。虽然可以使用近年来变得更具代表性的体内模型来研究阿尔茨海默氏病(例如,通过将自然遗传多样性和人源化APOE引入现有阿尔茨海默氏症的老鼠模型),但研究认知障碍和痴呆症(VCID)和Cerebral小型疾病(SV)的血管贡献的能力仍然很困难。实际上,VCID和SVD的分子机制仍然主要未知,并且缺乏这些疾病的体内模型。因此,代表性的人体体外模型将有益于在体内系统的完成并提高对神经变性的血管贡献的理解。人类诱导的多能干细胞(IPSC)技术的开发增加了体外中枢神经系统(CNS)模型的实用性,这些模型已逐渐从孤立的二维细胞培养物到多细胞三维组件,以更好地重新培养特定大脑区域的组织和建筑。但是,这些人类的“脑器官”仍然存在明显的缺陷。值得注意的是,皮质器官表现出不当组织的层状结构,并且缺乏具有血脑屏障(BBB)功能的垂体微脉管系统。这些定义限制了使用脑器官了解VCID和SVD的机制的代表性。在这个拟议的项目中,我们将开发具有强大神经血管功能的仿生脑器官平台。该提案的目标1将表征Cortica的组织和成熟。在一种新型的生物材料中生长的类器官,该材料模仿了Radial Glia提供的提示,以帮助指导层状图案。 AIM 2将专注于将脑内皮细胞和周细胞与皮质器官整合在一起,以在整个组织构建体中形成可灌注的微脉管系统,从而产生“神经血管器官”平台。然后,AIM 3将通过使神经血管器官遭受急性和慢性损伤损害BBB来验证神经血管器官的代表性;特别是,具有定义的APOE基因型的IPSC将用于评估对这种良好的遗传危险因素的响应神经血管功能障碍的发作和进展。总体而言,该项目将建立一个人类的体外模型的血管化皮质模型,该模型有望具有揭示VCID和SVD机制的实用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ethan Lippmann其他文献
Ethan Lippmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ethan Lippmann', 18)}}的其他基金
Perivascular fibroblasts, vascular fibrosis, and their contributions to cerebral amyloid angiopathy
血管周围成纤维细胞、血管纤维化及其对脑淀粉样血管病的影响
- 批准号:
10577536 - 财政年份:2022
- 资助金额:
$ 10.85万 - 项目类别:
STAT3 activation in astrocytes as a driver of neurovascular dysfunction in Alzheimer's disease and related dementias
星形胶质细胞中 STAT3 的激活是阿尔茨海默病和相关痴呆症神经血管功能障碍的驱动因素
- 批准号:
10562131 - 财政年份:2022
- 资助金额:
$ 10.85万 - 项目类别:
STAT3 activation in astrocytes as a driver of neurovascular dysfunction in Alzheimer's disease and related dementias
星形胶质细胞中 STAT3 的激活是阿尔茨海默病和相关痴呆症神经血管功能障碍的驱动因素
- 批准号:
10785691 - 财政年份:2022
- 资助金额:
$ 10.85万 - 项目类别:
iPSC-derived neurovascular tissue model of cerebral amyloiad angiopathy
iPSC 衍生的脑淀粉样血管病神经血管组织模型
- 批准号:
10044329 - 财政年份:2020
- 资助金额:
$ 10.85万 - 项目类别:
Modeling spinal cord axis patterning with human pluripotent stem cells
用人类多能干细胞模拟脊髓轴模式
- 批准号:
8644522 - 财政年份:2013
- 资助金额:
$ 10.85万 - 项目类别:
Modeling spinal cord axis patterning with human pluripotent stem cells
用人类多能干细胞模拟脊髓轴模式
- 批准号:
8852002 - 财政年份:2013
- 资助金额:
$ 10.85万 - 项目类别:
相似海外基金
Elucidating the role of Fra1 in pancreatic Kras-driven acinar to ductal metaplasia
阐明 Fra1 在胰腺 Kras 驱动的腺泡到导管化生中的作用
- 批准号:
10537870 - 财政年份:2022
- 资助金额:
$ 10.85万 - 项目类别:
Elucidating the role of Fra1 in pancreatic Kras-driven acinar to ductal metaplasia
阐明 Fra1 在胰腺 Kras 驱动的腺泡到导管化生中的作用
- 批准号:
10631947 - 财政年份:2022
- 资助金额:
$ 10.85万 - 项目类别: