Mechanisms and biological functions of SPOUT methyltransferases
SPOUT甲基转移酶的机制和生物学功能
基本信息
- 批准号:10736306
- 负责人:
- 金额:$ 31.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-14 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAmino Acid SequenceArchaeaAspartic Acid-Specific tRNAAwardBiochemicalBiologicalBiological AssayBiological ModelsBiological ProcessBiologyCell physiologyCellsChemicalsComplementComplexCryoelectron MicroscopyDefectDiseaseEndocrineEnsureEnzymatic BiochemistryEnzymesEukaryotaExhibitsFamilyFunctional disorderGenerationsGeneticGenetic CodeGenetic ModelsHealthHomologous GeneHumanIndividualInvestigationKnowledgeLifeLigationMaintenanceMethylationMethyltransferaseModelingModificationMolecularMutationNeurologicNucleic AcidsNucleotidesOrganismOrthologous GenePathway interactionsPatternPhenotypePositioning AttributeProcessProductionProtein BiosynthesisProteinsPurine NucleotidesQuality ControlRNARNA BiochemistryRibosomesRoleS-AdenosylhomocysteineS-AdenosylmethionineSaccharomyces cerevisiaeSpecificityStructureSubstrate SpecificitySyndromeSystemTimeTissuesTransfer RNATranslationsYeastsZebrafishanalogbasebiochemical toolsbiological adaptation to stresscofactordimerdisease phenotypedrug sensitivityfitnessgenetic approachhuman diseasein vitro Assayin vivoinsightinterdisciplinary approachloss of functionmembermonomermutantnew therapeutic targetposttranscriptionaltRNA Methyltransferasesyeast genetics
项目摘要
PROJECT SUMMARY/ ABSTRACT
Transfer RNAs (tRNAs) are the universal adaptor molecules necessary to convert the nucleic acid-based genetic
code into protein sequence during protein synthesis (translation) by the ribosome. This process is universally
conserved and fundamental to all life, and, as such, defects in the molecular players of translation, including
tRNAs, result in diverse human diseases. Specific chemical modifications such as methylation are common in
tRNA, but a detailed understanding of the enzymes that incorporate them and their contributions to tRNA function
(and disfunction in disease) have only recently emerged for a few select examples. Since the discovery of the
tRNA methyltransferase (Trm10) in Saccharomyces cerevisiae, an accumulating body of evidence, including
phenotypes in yeast and a multisymptomatic disease associated with human mutations, has established a
significant role for Trm10 in tRNA biology. To better understand the implications of Trm10 modification, the
mechanisms by which Trm10 family enzymes specifically recognize and act on their substrate tRNA, and the
impact of tRNA modifications on important cellular processes need to be addressed. This project will determine
the molecular basis for Trm10 mechanism and function using a multi-disciplinary approach. Genetic, biochemical
and molecular enzymology approaches will be combined with structural analyses of enzyme-tRNA complexes
using synthetic analogs of the native methyl donor, S-adenosyl-L-methionine, to uniquely identify the role of
Trm10 in the maintenance of a high-quality pool of tRNA. A newly developed vertebrate model for Trm10 function
will enable investigation of previously challenging questions on Trm10's role in the biological function of
multicellular eukaryotes. The studies will be performed in three complementary but independent aims that will:
1) Determine how specific tRNA substrates are selected for modification by yeast and vertebrate Trm10 enzymes
using structural, biochemical and genetic approaches; 2) Assess the molecular basis for and biological
significance of the uniquely conserved vertebrate m1A9 modification exploiting a new vertebrate model for Trm10
function, and 3) Identify tRNA-specific functions for G9 modification in yeast and zebrafish using complementary
genetic approaches in both model species. Collectively, the proposed studies will advance the fields of
enzymology, RNA biochemistry, and tRNA biology by providing mechanistic and biological insight into a tRNA
modification enzyme that is universally conserved among eukaryotes and is critically important for human health,
yet whose molecular mechanism and biological functions are not at all understood. These results will also provide
new insight into the dynamic landscape of tRNA modifications in multicellular eukaryotes.
项目摘要/摘要
转移RNA(TRNA)是转化基于核酸的遗传所需的通用衔接子分子
核糖体蛋白质合成期间的蛋白质序列代码。这个过程是普遍的
对所有生活的保守和基础
TRNA,导致各种人类疾病。特定的化学修饰(例如甲基化)在
tRNA,但对将其纳入酶及其对tRNA功能的贡献的酶有详细的理解
(疾病中的失功)直到最近才出现了一些精选的例子。由于发现
酿酒酵母中的tRNA甲基转移酶(TRM10),一种积累的证据,包括
酵母中的表型和与人类突变相关的多肿瘤疾病已经建立了
TRM10在TRNA生物学中的重要作用。为了更好地了解TRM10修改的含义
TRM10家族酶专门识别并作用于其底物tRNA的机制,以及
需要解决tRNA修饰对重要细胞过程的影响。这个项目将确定
使用多学科方法的TRM10机制和功能的分子基础。遗传,生化
和分子酶学方法将与酶-TRNA复合物的结构分析相结合
使用天然甲基供体S-腺苷-L-甲硫氨酸的合成类似物来唯一识别
TRM10在维持高质量的tRNA池中。 TRM10功能的新开发的脊椎动物模型
将对TRM10在TRM10在生物学功能中的作用进行调查
多细胞真核生物。这些研究将以三个互补但独立的目的进行:
1)确定如何选择特定的TRNA底物进行酵母和脊椎动物TRM10酶修饰
使用结构,生化和遗传方法; 2)评估分子基础和生物学
独特保守的脊椎动物M1A9修饰的意义,利用了TRM10的新脊椎动物模型
3)使用互补的酵母和斑马鱼中的G9修饰的tRNA特异性函数
两种模型物种的遗传方法。拟议的研究集体将推进
酶学,RNA生物化学和tRNA生物学通过提供机械和生物学洞察力
在真核生物中普遍保守的修饰酶,对人类健康至关重要,
然而,根本不了解其分子机制和生物学功能。这些结果也将提供
对多细胞真核生物中tRNA修饰的动态景观的新见解。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tied up in knots: Untangling substrate recognition by the SPOUT methyltransferases.
- DOI:10.1016/j.jbc.2022.102393
- 发表时间:2022-10
- 期刊:
- 影响因子:4.8
- 作者:Strassler, Sarah E.;Bowles, Isobel E.;Dey, Debayan;Jackman, Jane E.;Conn, Graeme L.
- 通讯作者:Conn, Graeme L.
Insights into Catalytic and tRNA Recognition Mechanism of the Dual-Specific tRNA Methyltransferase from Thermococcus kodakarensis.
深入了解柯达热球菌双特异性 tRNA 甲基转移酶的催化和 tRNA 识别机制。
- DOI:10.3390/genes10020100
- 发表时间:2019
- 期刊:
- 影响因子:3.5
- 作者:Krishnamohan,Aiswarya;Dodbele,Samantha;Jackman,JaneE
- 通讯作者:Jackman,JaneE
Transient kinetic analysis for studying ionizations in RNA modification enzyme mechanisms.
- DOI:10.1016/bs.mie.2021.07.002
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:A. Krishnamohan;Samantha Dodbele;J. Jackman
- 通讯作者:A. Krishnamohan;Samantha Dodbele;J. Jackman
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Graeme L Conn其他文献
Graeme L Conn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Graeme L Conn', 18)}}的其他基金
dsRNA regulation of the cytosolic innate immune system
胞质先天免疫系统的 dsRNA 调节
- 批准号:
10736791 - 财政年份:2019
- 资助金额:
$ 31.01万 - 项目类别:
dsRNA regulation of the cytosolic innate immune system
胞质先天免疫系统的 dsRNA 调节
- 批准号:
9891948 - 财政年份:2019
- 资助金额:
$ 31.01万 - 项目类别:
dsRNA regulation of the cytosolic innate immune system
胞质先天免疫系统的 dsRNA 调节
- 批准号:
10359208 - 财政年份:2019
- 资助金额:
$ 31.01万 - 项目类别:
Mechanisms and Biological functions of SPOUT methyltransferases
SPOUT甲基转移酶的机制和生物学功能
- 批准号:
9980946 - 财政年份:2018
- 资助金额:
$ 31.01万 - 项目类别:
Mechanisms and Biological functions of SPOUT methyltransferases
SPOUT甲基转移酶的机制和生物学功能
- 批准号:
10218211 - 财政年份:2018
- 资助金额:
$ 31.01万 - 项目类别:
Antimicrobial Resistance and Therapeutic Discovery Training Program
抗菌素耐药性和治疗发现培训计划
- 批准号:
10599247 - 财政年份:2014
- 资助金额:
$ 31.01万 - 项目类别:
Antimicrobial Resistance and Therapeutic Discovery Training Program
抗菌素耐药性和治疗发现培训计划
- 批准号:
10381447 - 财政年份:2014
- 资助金额:
$ 31.01万 - 项目类别:
Structural studies of PKR regulation by viral non-coding RNA
病毒非编码RNA调控PKR的结构研究
- 批准号:
8386211 - 财政年份:2012
- 资助金额:
$ 31.01万 - 项目类别:
Structural studies of PKR regulation by viral non-coding RNA
病毒非编码RNA调控PKR的结构研究
- 批准号:
8496700 - 财政年份:2012
- 资助金额:
$ 31.01万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A novel role for Wasl signaling in the regulation of skeletal patterning
Wasl 信号在骨骼模式调节中的新作用
- 批准号:
10718448 - 财政年份:2023
- 资助金额:
$ 31.01万 - 项目类别:
Design of Protease Inhibitors to Target HTLV-1
针对 HTLV-1 的蛋白酶抑制剂的设计
- 批准号:
10201509 - 财政年份:2020
- 资助金额:
$ 31.01万 - 项目类别:
Co-Translational Folding of Metamorphic Proteins: Assessing Structure-Function Transitions of the Mitotic Checkpoint Protein MAD2 on the Human Ribosome Surface and in the Presence of Folding Effectors
变态蛋白的共翻译折叠:评估人核糖体表面和折叠效应器存在下有丝分裂检查点蛋白 MAD2 的结构功能转变
- 批准号:
10598244 - 财政年份:2020
- 资助金额:
$ 31.01万 - 项目类别: