Mechanisms and Biological functions of SPOUT methyltransferases
SPOUT甲基转移酶的机制和生物学功能
基本信息
- 批准号:10218211
- 负责人:
- 金额:$ 27.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-14 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenosineAffectAmino Acid SequenceAnticodonArchaeaBindingBiochemicalBiologicalBiological AssayBiological ProcessBiologyBiophysicsCatalysisCellsChemicalsChimera organismComplementComplexCrystallizationDefectDeuteriumDiseaseEndocrineEnsureEnzymatic BiochemistryEnzymesEukaryotaExhibitsFamilyFluorouracilGeneticGenetic CodeGenetic TranscriptionGuanosineHealthHumanHuman BiologyHydrogenIndividualKineticsLifeLinkMaintenanceMass Spectrum AnalysisMethylationMethyltransferaseModelingModificationMolecularMolecular ConformationMutationNeurologicNucleic AcidsNucleotidesOrthologous GenePathway interactionsPhenotypePlayPositioning AttributeProcessProductionProtein BiosynthesisPurine NucleotidesRNARNA BiochemistryRNA metabolismReactionRibosomesRoentgen RaysRoleS-AdenosylhomocysteineS-AdenosylmethionineSaccharomyces cerevisiaeStructureSubstrate SpecificitySurfaceSyndromeSynthesis ChemistryTransfer RNATranslationsVariantVertebratesYeastsZebrafishanalogbasebiological adaptation to stressdimerdisease phenotypedrug sensitivityflexibilityhuman diseasein vitro activityin vivoinsightinterdisciplinary approachnew therapeutic targetnovelparalogous genestructural biologytRNA Methyltransferases
项目摘要
PROJECT SUMMARY/ ABSTRACT
Transfer RNAs (tRNAs) are the universal adaptor molecules necessary to convert the nucleic acid-based genetic
code to protein sequence during protein synthesis (translation) by the ribosome. This process is universally
conserved and fundamental to all life, and, as such, defects in the molecular players of translation, including
tRNAs, result in diverse human diseases. Specific chemical modifications such as methylation are common in
tRNA, but a detailed understanding of the enzymes that incorporate them and their contributions to tRNA function
(and disfunction in disease) have only recently emerged for a few select examples. Since the discovery of the
tRNA methyltransferase (Trm10) in Saccharomyces cerevisiae, an accumulating body of evidence, including
phenotypes in yeast and a multisymptomatic disease associated with human mutations, has established a
significant role for Trm10 in tRNA biology. To better understand the implications of Trm10 modification, the
mechanism by which Trm10 recognizes and acts on tRNA needs to be addressed. This project aims to determine
the molecular basis for Trm10 mechanism and function using a multi-disciplinary approach. Genetic, biochemical
and molecular enzymology approaches will be combined with structural analyses of enzyme-tRNA complexes,
and synthetic analogs of the native methyl donor, S-adenosyl-L-methionine, to uniquely identify the role of Trm10
in the maintenance of a high quality pool of tRNA. The studies will be performed in three complementary but
independent aims that will: 1) Determine the molecular mechanism of methylation by Trm10, using biophysical
and x-ray crystallographic structural analysis enabled by a novel mechanism (SAM analog)-based approach to
trap enzyme-tRNA complexes, and complemented by biochemical analyses of Trm10 variants and studies to
identify alternative substrates for Trm10 enzymes, cellular localization and native modification status; 2) Identify
the molecular basis for tRNA substrate-selectivity of yeast and human Trm10 orthologs through detailed
consideration of tRNA structure and stability; and, 3) Assess the roles of m1G9 in Trm10 target tRNAs in yeast
and the zebrafish vertebrate model. Collectively, the proposed studies will advance the fields of enzymology,
RNA biochemistry and tRNA biology by providing mechanistic and biological insight into a tRNA modification
enzyme that is universally conserved among eukaryotes and critically important for human biology, yet whose
molecular mechanism and biological functions are not at all understood. These results will also provide new
insight into the dynamic landscape of tRNA modifications in multicellular eukaryotes.
项目摘要/摘要
转移RNA(TRNA)是转化基于核酸的遗传所需的通用衔接子分子
核糖体蛋白质合成期间的蛋白质序列代码。这个过程是普遍的
对所有生活的保守和基础
TRNA,导致各种人类疾病。特定的化学修饰(例如甲基化)在
tRNA,但对将其纳入酶及其对tRNA功能的贡献的酶有详细的理解
(疾病中的失功)直到最近才出现了一些精选的例子。由于发现
酿酒酵母中的tRNA甲基转移酶(TRM10),一种积累的证据,包括
酵母中的表型和与人类突变相关的多肿瘤疾病已经建立了
TRM10在TRNA生物学中的重要作用。为了更好地了解TRM10修改的含义
需要解决TRM10识别和作用在tRNA上的机制。该项目旨在确定
使用多学科方法的TRM10机制和功能的分子基础。遗传,生化
和分子酶学方法将与酶-TRNA复合物的结构分析相结合,
和天然甲基供体S-腺苷-l-甲硫氨酸的合成类似物,以唯一识别TRM10的作用
在维持高质量的tRNA中。这些研究将以三个互补性进行,但
将使用生物物理的独立目标:1)确定TRM10的甲基化分子机制
和X射线晶体学结构分析通过新机制(SAM类似)的方法来实现
陷阱酶-TRNA复合物,并通过TRM10变体的生化分析和研究补充
确定TRM10酶,细胞定位和天然修饰状态的替代底物; 2)识别
通过详细的
考虑tRNA结构和稳定性; 3)评估M1G9在TRM10靶标在酵母中的作用
和斑马鱼脊椎动物模型。总的来说,拟议的研究将推进酶学领域,
RNA生物化学和tRNA生物学通过提供机械和生物学洞察力来修饰tRNA
在真核生物中普遍保守的酶,对人类生物学至关重要,却至关重要
分子机制和生物学功能根本不了解。这些结果也将提供新的
深入了解多细胞真核生物中tRNA修饰的动态景观。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Graeme L Conn其他文献
Graeme L Conn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Graeme L Conn', 18)}}的其他基金
dsRNA regulation of the cytosolic innate immune system
胞质先天免疫系统的 dsRNA 调节
- 批准号:
10736791 - 财政年份:2019
- 资助金额:
$ 27.21万 - 项目类别:
dsRNA regulation of the cytosolic innate immune system
胞质先天免疫系统的 dsRNA 调节
- 批准号:
9891948 - 财政年份:2019
- 资助金额:
$ 27.21万 - 项目类别:
dsRNA regulation of the cytosolic innate immune system
胞质先天免疫系统的 dsRNA 调节
- 批准号:
10359208 - 财政年份:2019
- 资助金额:
$ 27.21万 - 项目类别:
Mechanisms and Biological functions of SPOUT methyltransferases
SPOUT甲基转移酶的机制和生物学功能
- 批准号:
9980946 - 财政年份:2018
- 资助金额:
$ 27.21万 - 项目类别:
Mechanisms and biological functions of SPOUT methyltransferases
SPOUT甲基转移酶的机制和生物学功能
- 批准号:
10736306 - 财政年份:2018
- 资助金额:
$ 27.21万 - 项目类别:
Antimicrobial Resistance and Therapeutic Discovery Training Program
抗菌素耐药性和治疗发现培训计划
- 批准号:
10599247 - 财政年份:2014
- 资助金额:
$ 27.21万 - 项目类别:
Antimicrobial Resistance and Therapeutic Discovery Training Program
抗菌素耐药性和治疗发现培训计划
- 批准号:
10381447 - 财政年份:2014
- 资助金额:
$ 27.21万 - 项目类别:
Structural studies of PKR regulation by viral non-coding RNA
病毒非编码RNA调控PKR的结构研究
- 批准号:
8386211 - 财政年份:2012
- 资助金额:
$ 27.21万 - 项目类别:
Structural studies of PKR regulation by viral non-coding RNA
病毒非编码RNA调控PKR的结构研究
- 批准号:
8496700 - 财政年份:2012
- 资助金额:
$ 27.21万 - 项目类别:
相似国自然基金
遗传变异调控可变多聚腺苷酸化影响胰腺癌风险的分子流行病学研究
- 批准号:82373663
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
遗传变异调控选择性多聚腺苷酸化影响头颈部鳞癌发生的分子流行病学研究
- 批准号:82304236
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
选择性多聚腺苷酸化关联的遗传变异对肺腺癌发病风险的影响及机制研究
- 批准号:82273715
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
腺苷异常积累影响糖尿病伤口修复的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
非小细胞肺癌肿瘤微环境中CD39+CD69+终末CD8+T细胞通过腺苷通路影响Th细胞功能的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Influence of Particulate Matter on Fetal Mitochondrial Programming
颗粒物对胎儿线粒体编程的影响
- 批准号:
10734403 - 财政年份:2023
- 资助金额:
$ 27.21万 - 项目类别:
The Role of m6A-RNA Methylation in Memory Formation and Recall and Its Modulation and Influence on Long-Term Outcomes as a Consequence of Early Life Lead Exposure
m6A-RNA 甲基化在记忆形成和回忆中的作用及其对早期铅暴露对长期结果的影响
- 批准号:
10658020 - 财政年份:2023
- 资助金额:
$ 27.21万 - 项目类别:
The role and mechanism of RNA m6A modification in the pathogenesis and drug-resistance of prostate cancer
RNA m6A修饰在前列腺癌发病及耐药中的作用及机制
- 批准号:
10638634 - 财政年份:2023
- 资助金额:
$ 27.21万 - 项目类别:
YTHDF3 as a critical regulator of cardiac function
YTHDF3 作为心脏功能的关键调节因子
- 批准号:
10676427 - 财政年份:2023
- 资助金额:
$ 27.21万 - 项目类别: