Measuring NICU Nurse Practitioner Workload in Real-time to Improve Care Quality and Patient Safety
实时测量 NICU 护士从业人员的工作量,以提高护理质量和患者安全
基本信息
- 批准号:10736277
- 负责人:
- 金额:$ 68.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:Academic Medical CentersAddressAffectCOVID-19 pandemicCaringCollaborationsCommunicationComplexCritical IllnessDataData ElementDevelopmentDiagnosticDimensionsDoseElectronic Health RecordEngineeringEnvironmental Risk FactorEvaluation StudiesEventFocus GroupsFoundationsFundingFutureGrowthHealth systemHealthcareHospitalsHourHumanHuman EngineeringIatrogenesisIncidenceInterruptionInterventionInterviewJob SatisfactionLearningMapsMeasurementMeasuresMechanical ventilationMedication ErrorsModelingNational Institute of Child Health and Human DevelopmentNeonatalNeonatal Intensive Care UnitsNeonatal NursingNosocomial InfectionsNurse PractitionersNursesObservational StudyOccupationsOrganPatient CarePatient Self-ReportPatient-Focused OutcomesPatientsPerformancePerioperativePersonal SatisfactionPhysiologyPlayProcessProviderPsychological FactorsPublic HealthQuality of CareRecommendationResearchResearch PersonnelResource AllocationRiskRoleSafetySeveritiesShapesStructureSurveysSystemTimeUniversitiesWeightWorkWorkloadclinical decision supportclinical practicedesignenvironmental stressorexperiencehealth information technologyhuman centered designimprovedinnovationmicrosystemsmortalitymultidisciplinarymultilevel analysisneonatal careneonatal patientneonatepatient safetyprofessional atmosphereprospectivesafety outcomessupport toolstoolvalidation studies
项目摘要
PROJECT SUMMARY
High provider workload is a threat to care quality, patient safety, and providers’ well-being and job
satisfaction. Workload – which lacks a universally accepted definition - is a complex multi-dimensional
construct that is affected by external task demands and environmental, organizational, and psychological
factors. The importance of managing high workload is nowhere more evident than in neonatal intensive care
units (NICUs). Critically ill neonates are highly vulnerable to iatrogenic events due to their immaturity and
fragility, and high clinician workload has been directly associated with increased incidence of adverse neonatal
safety outcomes.
Despite the evidence and need, patient safety researchers have been slow to develop multi-level models,
scalable workload measurement systems, or other health information technology interventions to improve
workload management and patient safety. Conventional workload management tools predominantly measure
and predict workload using unit-level (e.g., staffing ratios) or patient-level (e.g., acuity) data rather than data
collected across the four levels of workload recommended by human factors engineers (HFEs) - unit, job,
patient, and situation. As a result, current tools under-measure the workload experienced by providers and are
not designed to identify mutable microsystem factors that contribute most to provider workload.
A promising development in workload research is the increasing emphasis on measuring situational
workload which best explains the workload experienced by clinicians due to healthcare microsystem design.
Situational workload is most affected by performance obstacles (i.e., delays, interruptions, etc.) in the local
work environment and can be applied at the unit, job, or patient-levels. Most importantly, it is diagnostic of
underlying contributory factors and therefore actionable for improvement. To date, situational workload has
been measured using subjective surveys which are work-interrupting, thus difficult to integrate into practice.
Vanderbilt University Medical Center (VUMC), in collaboration Johns Hopkins University (JHU),
will employ a systems engineering human-centered design process to design, develop, and validate
new multi-level model of NICU nurse practitioner workload derived from readily accessible electronic
health record (EHR) data. The validated model will be the foundation for a future EHR-based clinical
decision support (CDS) tool that will track the real-time workload of NICU providers, predict near-
term future unit workload, and guide workload reduction and balancing interventions. The project’s
three Specific Aims are: Aim 1. To conduct a comprehensive HFE-based analysis of NICU provider
(i.e., neonatal nurse practitioner) workload; Aim 2. To design and develop real-time multivariable
workload models and Aim 3. To validate the real-time workload models at VUMC (A) and to
determine the generalizability of the models at an external hospital (B).
项目概要
提供者的高工作量对护理质量、患者安全以及提供者的福祉和工作构成威胁
工作量满意度——缺乏普遍接受的定义——是一个复杂的多维度的问题。
受外部任务需求以及环境、组织和心理影响的构建
管理高工作量的重要性在新生儿重症监护中最为明显。
危重新生儿由于其不成熟和不成熟而极易发生医源性事件。
脆弱性和临床医生工作量大与新生儿不良事件发生率增加直接相关
安全结果。
尽管有证据和需求,患者安全研究人员在开发多层次模型方面进展缓慢,
可扩展的工作量测量系统,或其他健康信息技术干预措施,以改善
传统的工作量管理工具主要衡量工作量管理和患者安全。
并使用单位级别(例如,人员配置比率)或患者级别(例如,敏锐度)数据而不是数据来预测工作量
收集人为因素工程师 (HFE) 推荐的四个工作量级别 - 单位、工作、
因此,当前的工具低估了提供者所经历的工作量,并且
并非旨在识别对提供商工作量影响最大的可变微系统因素。
工作负荷研究的一个有希望的发展是越来越重视测量情境
工作量最能解释讲师由于医疗保健微系统设计而经历的工作量。
情境工作负载受本地性能障碍(即延迟、中断等)的影响最大。
工作环境,可以应用于单位、工作或患者层面。最重要的是,它可以诊断。
迄今为止,情景工作量已经成为潜在的影响因素,因此可以采取行动进行改进。
使用主观调查进行测量,这会干扰工作,因此难以融入实践。
范德比尔特大学医学中心 (VUMC) 与约翰霍普金斯大学 (JHU) 合作,
将采用以人为本的系统工程设计流程来设计、开发和验证
NICU护士从业人员工作量的新多级模型源自易于访问的电子设备
健康记录 (EHR) 数据经过验证的模型将成为未来基于 EHR 的临床的基础。
决策支持 (CDS) 工具将跟踪 NICU 提供者的实时工作量,预测近期情况
术语未来单位工作量,并指导工作量减少和平衡项目的干预措施。
三个具体目标是: 目标 1. 对 NICU 提供者进行基于 HFE 的全面分析
(即新生儿执业护士)工作量;目标 2. 设计和开发实时多变量
工作负载模型和目标 3. 验证 VUMC (A) 的实时工作负载模型并
确定外部医院模型的普遍性 (B)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANIEL Joseph FRANCE其他文献
DANIEL Joseph FRANCE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANIEL Joseph FRANCE', 18)}}的其他基金
Realtime Measurement of Situational Workload in NICU Nurses to Improve Workload Management and Patient Safety
实时测量 NICU 护士的工作量,以改善工作量管理和患者安全
- 批准号:
10611477 - 财政年份:2022
- 资助金额:
$ 68.95万 - 项目类别:
Realtime Measurement of Situational Workload in NICU Nurses to Improve Workload Management and Patient Safety
实时测量 NICU 护士的工作量,以改善工作量管理和患者安全
- 批准号:
10444476 - 财政年份:2022
- 资助金额:
$ 68.95万 - 项目类别:
Cancer Patient Safety Learning Laboratory (CaPSLL): Preventing Clinical Deterioration in Outpatients
癌症患者安全学习实验室 (CaPSLL):防止门诊患者临床恶化
- 批准号:
10254301 - 财政年份:2018
- 资助金额:
$ 68.95万 - 项目类别:
Computer Simulation of Acute Coronary Syndrome Care in the Emergency Department
急诊科急性冠脉综合征护理的计算机模拟
- 批准号:
7800874 - 财政年份:2009
- 资助金额:
$ 68.95万 - 项目类别:
Computer Simulation of Acute Coronary Syndrome Care in the Emergency Department
急诊科急性冠脉综合征护理的计算机模拟
- 批准号:
7659178 - 财政年份:2009
- 资助金额:
$ 68.95万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Improving Patient-Centered Decision-Making for Stress Urinary Incontinence Treatment in Older Men
改善老年男性压力性尿失禁治疗中以患者为中心的决策
- 批准号:
10729838 - 财政年份:2023
- 资助金额:
$ 68.95万 - 项目类别:
Improving medication adherence and disease control for patients with multimorbidity: the role of price transparency tools
提高多病患者的药物依从性和疾病控制:价格透明度工具的作用
- 批准号:
10591441 - 财政年份:2023
- 资助金额:
$ 68.95万 - 项目类别:
Learning Precision Medicine for Rare Diseases Empowered by Knowledge-driven Data Mining
通过知识驱动的数据挖掘学习罕见疾病的精准医学
- 批准号:
10732934 - 财政年份:2023
- 资助金额:
$ 68.95万 - 项目类别:
Dynamic multimodal connectivity analysis of brain networks in focal epilepsy
局灶性癫痫脑网络的动态多模态连接分析
- 批准号:
10678514 - 财政年份:2023
- 资助金额:
$ 68.95万 - 项目类别:
Attentional Mechanisms of Cognitive Compensation in Subjective Cognitive Decline and AD Risk
主观认知下降和 AD 风险中认知补偿的注意机制
- 批准号:
10738600 - 财政年份:2023
- 资助金额:
$ 68.95万 - 项目类别: