Computer Simulation of Acute Coronary Syndrome Care in the Emergency Department
急诊科急性冠脉综合征护理的计算机模拟
基本信息
- 批准号:7800874
- 负责人:
- 金额:$ 19.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-04-10 至 2012-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcademyAccident and Emergency departmentAcuteAcute myocardial infarctionAdultAffectAmericanAmerican Heart AssociationBedsBiochemistryBiological MarkersCardiacCardiologyCaringCause of DeathCharacteristicsChest PainClinicalClinical DataClinical ResearchCohort StudiesComplementComplexComputer SimulationConsultCouplingCox ModelsCritical CareCrowdingDataDevelopmentDiagnosisDimensionsElectrocardiogramEmergency SituationEngineeringEventFutureGuidelinesHealthcareHospital Information SystemsHospitalizationHospitalsInformaticsInformation SystemsInstitutionKnowledgeLaboratoriesLeadLinkLogicMethodologyMethodsMetricModelingMyocardial InfarctionMyocardial IschemiaNatureOperating RoomsOutcomePathway interactionsPatient CarePatientsPerformancePractice GuidelinesProcessProviderPublic HealthQuality IndicatorQuality of CareQueuing TheoryRadiology SpecialtyResearchResearch DesignResearch MethodologyResourcesRiskRoentgen RaysSafetyServicesStatistical MethodsStatistical ModelsStratificationStrokeSystemTestingTimeUncertaintyVisitWorkacute coronary syndromebasecare deliverycare systemscollegecomputerized data processingevidence baseevidence based guidelineshazardimprovedinnovationmeetingsmicrosystemsmodels and simulationoperationpatient safetypreventprogramspublic health relevanceservice utilizationsimulationtherapy designtool
项目摘要
DESCRIPTION (provided by applicant): The primary objective of this study is to use queuing theory - the study of waiting lines - and computer simulation, to determine how tight coupling between hospitals and emergency departments (ED) affects time-critical cardiac care in the ED. The study aims to explain how variability in the demand for ED and hospital resources creates service delays (radiology, laboratory, and consults) and bottlenecks in patient flow, and how these factors lead to performance errors in the diagnosis and treatment of patients suspected of having acute coronary syndrome (ACS). ACS is an umbrella term that includes all clinical findings consistent with acute myocardial ischemia. Because delays in delivery of evidence-based care affects outcome in ACS, this study will define performance errors as avoidable delays in care delivery. Chest pain prompts over 5.3 million ED visits and more than 1 million hospitalizations annually for acute myocardial infarction (AMI), the leading cause of death in the U.S., often occurring before the patient is admitted to the hospital. ACS is a strong predictor of future AMI, and clinical research has shown that rapid risk stratification and timely treatment are critical to favorable outcomes in ACS patients. The American College of Cardiology (ACC), the American Heart Association (AHA), and others have developed and endorsed practice guidelines for ACS, many of which emphasize the temporal dimension of care. Despite growing clinical evidence supporting these guidelines, many EDs fail to meet these evidence-based standards. [The study hypothesis is that wait time distributions associated with ACS quality indicators (QI) are influenced more by artificial (i.e., man-made) variability in ED and hospital work processes than by natural variability in ED patient arrivals and clinical factors. This project will use a retrospective cohort study of adult patients admitted to the ED with suspected ACS. The specific aims are to: 1) Recreate the time-course of ED care for all suspected ACS patients during a 35-month period; 2) Use system queuing metrics to characterize concurrent demands placed on ED and hospital system resources during each discrete episode of ACS patient care; 3) Use Cox proportional hazards regression to model the effects of patient characteristics (i.e., clinical and demographic), ancillary service utilization (e.g., ECG), staffing provisions, and system queuing metrics characterizing ED and hospital patient flow on time-dependent ACS QIs; 4) Develop and validate an evidence-based discrete-event simulation (DES) model of the hospital cardiac care system to advance our understanding of ACS performance errors and to facilitate predictive (i.e., "what if") analyses of clinical improvements aimed at eliminating errors and delays. A Cox model will be developed for each ACS process interval (i.e., time to event). These models will be programmed as functions into the applicable DES entity (i.e., patient, lab, X-ray, etc) flow logic to compute wait-time distributions for each care process interval (ED arrival-to-ECG, etc). The simulation methodology will be used to prospectively test system interventions designed to improve the timeliness of cardiac care in the ED]. Public Health Relevance: This project is relevant to public health because it aims to identify hospital system barriers that hinder or prevent emergency department (ED) clinicians from adhering to evidence-based practice guidelines for acute coronary syndrome. A major component of the research will focus on the impact of ED crowding, a national but understudied problem, on emergency cardiac care. The research is innovative because it will use system engineering tools to complement conventional statistical methods in modeling complex dynamic interactions between patients and the healthcare care system.
描述(由申请人提供):本研究的主要目的是使用排队理论 - 对等待线的研究和计算机模拟,以确定医院和急诊部门(ED)之间的紧密耦合影响ED中的时间关键心脏护理。该研究旨在解释对ED和医院资源需求的可变性如何创造服务延迟(放射学,实验室和咨询)以及患者流动的瓶颈,以及这些因素如何导致诊断和治疗的诊断和治疗,该患者因急性冠状动脉综合征(ACS)的诊断和治疗。 ACS是一个伞术,其中包括与急性心肌缺血一致的所有临床发现。由于提供循证护理的延迟会影响ACS的结果,因此本研究将把绩效错误定义为可避免的护理延迟。胸痛促使急性心肌梗死(AMI)每年超过530万次ED访问和超过100万个住院治疗,这是美国的主要死亡原因,通常发生在患者入院之前。 ACS是未来AMI的有力预测指标,临床研究表明,快速的风险分层和及时治疗对于ACS患者的有利结果至关重要。美国心脏病学院(ACC),美国心脏协会(AHA)以及其他人制定并认可了ACS实践指南,其中许多强调了护理的时间维度。尽管越来越多的临床证据支持这些准则,但许多ED无法满足这些基于证据的标准。 [研究假设是,与ACS质量指标(QI)相关的等待时间分布比ED患者到达和临床因素的自然变异性更受ed和医院工作过程中人工(即人为)变异性的影响更大。该项目将使用可疑ACS的ED接纳的成年患者进行回顾性队列研究。具体目的是:1)在35个月内为所有可疑的ACS患者重新创建ED护理时间; 2)使用系统排队指标来表征ACS患者护理的每个离散事件中对ED和医院系统资源提出的并发需求; 3)使用COX比例危害回归来模拟患者特征(即临床和人口统计学),辅助服务利用率(例如,ECG),人员配备条款以及系统排队指标ED和医院患者流动对时间依赖性ACS QIS的效果; 4)开发和验证医院心脏护理系统的基于证据的离散事件模拟(DES)模型,以提高我们对ACS性能错误的理解,并促进预测性(即“如果”)分析旨在消除错误和延迟的临床改进。将针对每个ACS过程间隔开发COX模型(即事件的时间)。这些模型将作为功能编程为适用的DES实体(即患者,实验室,X射线等)流量逻辑,以计算每个护理过程间隔(ED到达到ECG等)的等待时间分布。模拟方法将用于测试旨在改善ED中心脏护理的及时性的前瞻性测试系统干预措施。公共卫生相关性:该项目与公共卫生有关,因为它旨在确定阻碍或阻止急诊科(ED)临床医生遵守急性冠状动脉综合症实践指南的医院系统障碍。该研究的主要组成部分将重点介绍一个对紧急心脏护理的全国但已研究的问题Ed Crowding的影响。这项研究具有创新性,因为它将使用系统工程工具来补充常规统计方法,以建模患者与医疗保健系统之间的复杂动态相互作用。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Factors Influencing Time-Dependent Quality Indicators for Patients With Suspected Acute Coronary Syndrome.
- DOI:10.1097/pts.0000000000000242
- 发表时间:2020-03
- 期刊:
- 影响因子:2.2
- 作者:France DJ;Levin S;Ding R;Hemphill R;Han J;Russ S;Aronsky D;Weinger M
- 通讯作者:Weinger M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANIEL Joseph FRANCE其他文献
DANIEL Joseph FRANCE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANIEL Joseph FRANCE', 18)}}的其他基金
Measuring NICU Nurse Practitioner Workload in Real-time to Improve Care Quality and Patient Safety
实时测量 NICU 护士从业人员的工作量,以提高护理质量和患者安全
- 批准号:
10736277 - 财政年份:2023
- 资助金额:
$ 19.73万 - 项目类别:
Realtime Measurement of Situational Workload in NICU Nurses to Improve Workload Management and Patient Safety
实时测量 NICU 护士的工作量,以改善工作量管理和患者安全
- 批准号:
10611477 - 财政年份:2022
- 资助金额:
$ 19.73万 - 项目类别:
Realtime Measurement of Situational Workload in NICU Nurses to Improve Workload Management and Patient Safety
实时测量 NICU 护士的工作量,以改善工作量管理和患者安全
- 批准号:
10444476 - 财政年份:2022
- 资助金额:
$ 19.73万 - 项目类别:
Cancer Patient Safety Learning Laboratory (CaPSLL): Preventing Clinical Deterioration in Outpatients
癌症患者安全学习实验室 (CaPSLL):防止门诊患者临床恶化
- 批准号:
10254301 - 财政年份:2018
- 资助金额:
$ 19.73万 - 项目类别:
Computer Simulation of Acute Coronary Syndrome Care in the Emergency Department
急诊科急性冠脉综合征护理的计算机模拟
- 批准号:
7659178 - 财政年份:2009
- 资助金额:
$ 19.73万 - 项目类别:
相似海外基金
Using Small Area Variation Analysis to Investigate Sources of Practice Variation for Febrile Infants at Risk for Invasive Bacterial Infections
使用小面积变异分析来调查有侵袭性细菌感染风险的发热婴儿的实践变异来源
- 批准号:
10588846 - 财政年份:2023
- 资助金额:
$ 19.73万 - 项目类别:
Optimization and Implementation Trial of a User-Centered Emergency Care Planning Tool for Infants with Medical Complexity
以用户为中心的医疗复杂性婴儿紧急护理计划工具的优化和实施试验
- 批准号:
10678867 - 财政年份:2022
- 资助金额:
$ 19.73万 - 项目类别:
Optimization and Implementation Trial of a User-Centered Emergency Care Planning Tool for Infants with Medical Complexity
以用户为中心的医疗复杂性婴儿紧急护理计划工具的优化和实施试验
- 批准号:
10506588 - 财政年份:2022
- 资助金额:
$ 19.73万 - 项目类别: