Tissue Engineered Nigrostriatal Pathway for Anatomical Tract Reconstruction in Parkinson's Disease
组织工程黑质纹状体通路用于帕金森病的解剖束重建
基本信息
- 批准号:10737098
- 负责人:
- 金额:$ 40.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdhesivesAffectAnatomyAnimal ModelAnimalsArchitectureAxonBasal GangliaBehavioralCell TherapyCellsCessation of lifeCharacteristicsClinical ResearchClinical TreatmentConfocal MicroscopyCorpus striatum structureDLG4 geneDendritesDisease modelDopamineDorsalElectrophysiology (science)EnsureExcisionExhibitsFiberForelimbFutureGIRK2 subunit, G protein-coupled inwardly-rectifying potassium channelGeneticGoalsHumanHyaluronic AcidHydrogelsImmunohistochemistryImplantIn VitroLesionLimb structureMapsMeasurementMeasuresMediatingMedicalMethodsModelingModificationMotorNerve DegenerationNeural PathwaysNeuritesNeuroanatomyNeurodegenerative DisordersNeuronsNeurosciencesOpticsOutcomeParkinson DiseasePathway interactionsPatientsPatternPerformancePeriodicityPersonsPhysiologicalPopulationPositron-Emission TomographyPresynaptic TerminalsRattusRecoveryRegulationRoleScanningSignal TransductionSubstantia nigra structureSynapsesSynapsinsSystemTechniquesTestingTimeTissue EngineeringTubular formationVisualizationbiomaterial compatibilitydopaminergic neuronhuman stem cellsimplantationimprovedin vivoinduced pluripotent stem cellmotor deficitmotor recoverymotor symptommultidisciplinaryneglectnerve supplyneuralneuroimagingneurosurgerynigrostriatal pathwaypars compactapharmacologicpostsynapticpreclinical studypreservationpresynapticrabies viral tracingreceptor functionreconstructionreinnervationrepairedresponserestorationstem cell differentiationstem cellstau Proteinstreatment strategyuptake
项目摘要
ABSTRACT
Parkinson’s disease (PD) is a progressive neurodegenerative disease that affects 10 million people worldwide.
Its motor symptoms result from selective degeneration of dopaminergic neurons in the substantia nigra pars
compacta, leading to a loss of their long-projecting axonal inputs to the striatum. Conventional cell therapy
involves implanting dopaminergic neurons into the striatum; however, this strategy disregards the important
systems-level implications of the native neuroanatomy. Pathway reconstruction strategies aim to address this
limitation by replacing both neurons and axonal fibers in a manner that restores the anatomy – and hence
circuit function – of the lost pathway. We have developed a reconstruction strategy whereby tissue-engineered
nigrostriatal pathways (TE-NSPs) are pre-fabricated in vitro featuring a population of human stem cell-derived
dopaminergic neurons and their long-projecting axonal tracts encased within a biocompatible tubular hydrogel.
TE-NSPs may be implanted to directly replace the pathway, supplying both dopaminergic neurons to the nigra
and providing axonal inputs to the striatum, thereby restoring crucial interconnectivity of the basal ganglia. In
this proposal, we will answer a fundamental and neglected question in cell therapy for PD by characterizing
whether pathway reconstruction with the TE-NSPs enables improved restoration of motor function compared to
conventional striatal grafts in a rat model of PD. Our overarching hypothesis is that TE-NSPs will lead to more
robust motor recovery than striatal grafts through a mechanism involving the reestablishment of physiological
innervation and striatal dopamine regulation patterns more closely matching those of native basal ganglia. This
hypothesis will be tested over three Aims: (1) Establish the ability of TE-NSPs to reconstruct basal ganglia
circuitry via axonal-dendritic synaptic integration; (2) Demonstrate real-time efficacy of TE-NSPs in restoring
nigrostriatal functionality; (3) Assess the influence of TE-NSP activity on motor recovery. TE-NSP mechanisms
and efficacy will be compared to hydrogel-encased nigral or striatal grafts, acellular hydrogel implants, as well
as non-implant and non-lesioned animals out to 24 weeks post-implantation. Motor function will be evaluated
with rotational, forelimb asymmetry and adhesive removal tests. Innervation and connectivity patterns will be
assessed with immunohistochemistry and monosynaptic rabies tracing, while ex vivo and in vivo voltammetry
and [18F]F-DOPA positron emission tomography will be used to analyze real-time dopamine release and
uptake in the striatum. We will also employ chemogenetics to silence neural activity in TE-NSPs to test the
effects on motor function. Overall, TE-NSPs address a crucial gap in clinical treatment by providing a means to
directly replace the nigrostriatal pathway, which may yield significant benefits over other methods by providing
properly-regulated dopamine in the striatum as characteristic of integrated basal ganglia circuitry. These
studies will further the long-term goal of advancing TE-NSPs as a Tissue Engineered Medical Product to
mitigate the neuronal-axonal loss underlying the motor symptoms in patients afflicted by PD.
抽象的
帕金森氏病(PD)是一种进行性神经退行性疾病,影响了全球1000万人。
它的运动症状是由底虫中多巴胺能神经元的选择性变性引起的
紧凑型,导致其对纹状体的长期轴突输入损失。常规细胞疗法
涉及将多巴胺能神经元植入纹状体中;但是,该策略无视重要的
天然神经解剖学的系统水平含义。途径重建策略旨在解决这个问题
通过以恢复解剖结构的方式替换神经元和轴突纤维来限制 - 因此
电路功能 - 丢失的路径。我们已经制定了一种重建策略,从而进行了组织工程
黑质纹状体途径(TE-NSP)在体外预先制作,具有人类干细胞衍生的群体
多巴胺能神经元及其在生物相容性的管状水凝胶中包裹的长射轴突。
Te-NSP可以植入直接替换途径,向Nigra提供两个多巴胺能神经元
并为纹状体提供轴突输入,从而恢复了低音神经节的关键互连性。在
这项建议,我们将通过表征PD的细胞疗法中的基本和被忽视的问题
与TE-NSP相比
PD大鼠模型中的常规纹状体移植物。我们的总体假设是TE-NSP将导致更多
通过一种机制涉及重建生理学
神经和纹状体多巴胺调节模式更加与天然基本神经节的神经调节模式相匹配。这
假设将在三个目标上进行检验:(1)确定TE-NSP重建基底神经节的能力
通过轴突树枝状突触整合电路; (2)证明TE-NSP在还原时的实时效率
斑纹纹状体功能; (3)评估TE-NSP活动对运动恢复的影响。 TE-NSP机制
并且将其轻松与基于水凝胶的ni胶或纹状体移植物,小细胞水凝胶向上进行比较
作为非植入植物和非静态动物,到植入后24周。将评估运动功能
通过旋转,前肢不对称和粘合剂去除试验。神经和连通性模式将是
通过免疫组织化学和单突触狂犬病追踪进行评估,而离体和体内伏安法
[18F] F-DOPA极性发射断层扫描将用于分析实时多巴胺释放和
在纹状体中吸收。我们还将采用化学遗传学来沉默TE-NSP的神经活动,以测试
对运动功能的影响。总体而言,TE-NSP通过提供一种方法来解决临床治疗中的关键差距
直接替换黑质纹状体途径,这可能会通过提供其他方法而产生重大好处
纹状体中的多巴胺适当调节,是综合的巴萨神经节电路的特征。这些
研究将进一步将TE-NSP作为组织工程医学产品的长期目标
减轻患有PD患者运动症状的神经元轴丧失。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Kacy Cullen其他文献
Daniel Kacy Cullen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Kacy Cullen', 18)}}的其他基金
Tissue Engineered Rostral Migratory Stream for Directed Neuronal Replacement
用于定向神经元替换的组织工程嘴侧迁移流
- 批准号:
10373065 - 财政年份:2021
- 资助金额:
$ 40.23万 - 项目类别:
Tissue Engineered Rostral Migratory Stream for Directed Neuronal Replacement
用于定向神经元替换的组织工程嘴侧迁移流
- 批准号:
10820173 - 财政年份:2021
- 资助金额:
$ 40.23万 - 项目类别:
Tissue engineered rostral migratory stream for directed neuronal replacement
用于定向神经元替换的组织工程嘴部迁移流
- 批准号:
10527087 - 财政年份:2021
- 资助金额:
$ 40.23万 - 项目类别:
Tissue Engineered Rostral Migratory Stream for Directed Neuronal Replacement
用于定向神经元替换的组织工程嘴侧迁移流
- 批准号:
10210547 - 财政年份:2021
- 资助金额:
$ 40.23万 - 项目类别:
Tissue Engineered Rostral Migratory Stream for Directed Neuronal Replacement
用于定向神经元替换的组织工程嘴侧迁移流
- 批准号:
10608115 - 财政年份:2021
- 资助金额:
$ 40.23万 - 项目类别:
SDR: Genomic analysis of blast tube induced TBI in mice
SDR:小鼠爆管诱发 TBI 的基因组分析
- 批准号:
9916439 - 财政年份:2020
- 资助金额:
$ 40.23万 - 项目类别:
SDR: Genomic analysis of blast tube induced TBI in mice
SDR:小鼠爆管诱发 TBI 的基因组分析
- 批准号:
10553170 - 财政年份:2020
- 资助金额:
$ 40.23万 - 项目类别:
SDR: Genomic analysis of blast tube induced TBI in mice
SDR:小鼠爆管诱发 TBI 的基因组分析
- 批准号:
10438522 - 财政年份:2020
- 资助金额:
$ 40.23万 - 项目类别:
Transplantable Micro-Tissue Engineered Neural Networks to Restore the Nigrostriatal Pathway in Parkinson's Disease
可移植微组织工程神经网络恢复帕金森病的黑质纹状体通路
- 批准号:
10403480 - 财政年份:2017
- 资助金额:
$ 40.23万 - 项目类别:
相似国自然基金
基于短肽诱导蚕丝蛋白组装的可控粘附生物粘合剂的制备及粘附性能研究
- 批准号:52303272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氮杂环丙烷基聚多硫化物可逆粘合剂的分子设计与制备
- 批准号:22378080
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多酚功能化壳聚糖基组织粘合剂构建及其能量耗散机制探究
- 批准号:82302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载MUR仿生脂质体粘合剂靶向调控荷菌巨噬细胞IFI204/ARMCX3/Caspase-11焦亡抑制创伤性骨髓炎发生的机制研究
- 批准号:82372421
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
多尺度低表面能粘合剂的构筑及织物基传感器稳定性提升机制研究
- 批准号:22302110
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 40.23万 - 项目类别:
Reconfigurable 3D Origami Probes for Multi-modal Neural Interface
用于多模态神经接口的可重构 3D 折纸探针
- 批准号:
10738994 - 财政年份:2023
- 资助金额:
$ 40.23万 - 项目类别:
MLL1 drives collaborative leukocyte-endothelial cell signaling and thrombosis after coronavirus infection
MLL1在冠状病毒感染后驱动白细胞-内皮细胞信号传导和血栓形成
- 批准号:
10748433 - 财政年份:2023
- 资助金额:
$ 40.23万 - 项目类别:
Phosphatase-dependent regulation of desmosome intercellular junctions
桥粒细胞间连接的磷酸酶依赖性调节
- 批准号:
10677182 - 财政年份:2023
- 资助金额:
$ 40.23万 - 项目类别:
The Role of Layilin as a Novel Regulator of Platelet Activation and Thromboinflammation
Layilin 作为血小板活化和血栓炎症的新型调节剂的作用
- 批准号:
10638243 - 财政年份:2023
- 资助金额:
$ 40.23万 - 项目类别: