Advanced Intraoperative Neuromonitoring System

先进的术中神经监测系统

基本信息

  • 批准号:
    7482811
  • 负责人:
  • 金额:
    $ 24.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-19 至 2010-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Cranial and peripheral biopotentials are routinely utilized to evaluate neurophysiologic integrity of both cranial and peripheral nerves during various surgical procedures. Intraoperative neurophysiological monitoring (IONM) provides outcome-sensitive, real-time metrics of neural transmission integrity, such as somatosensory evoked potential amplitude and latency. Such measures dynamically guide surgical procedures and reduce the risk of post-operative disabilities and complications. IONM has found widespread use in surgical interventions involving the brain and spinal cord for a range of disorders, including forms of cancer with CNS involvement. However, cerebral and peripheral biopotentials are very low level (down to sub-microvolt) signals that are highly susceptible to contamination by an array of electrically powered devices in the operating room (OR), such as the anesthesia machine, warming devices and especially, electrosurgical units (ESUs). Electromagnetic and electrostatic interference, both in the low frequency range (primarily 50-60 Hz) and radio frequency (RF) range limits and complicates signal acquisition and interpretation. In practice, the start of surgical procedures is often delayed and procedures can be interrupted due interference problems. ESU activation obliterates biopotential signal recordings. Interruption of evoked potential averaging sequences requires restart. Conventional methods of noise reduction, such as "notch" filtering for line frequency noise, are often ineffective and impose various compromises of signal integrity, such as amplitude reduction and phase-shifting due to proximity to the signal frequency range. "Baseline restore" techniques are useful in minimizing recovery time from ESU activation and other transients, but do not address the problem of signal loss at all. An advanced Intraoperative Neuromonitoring (aIONM) System is proposed that will achieve a very high level of immunity to both electrostatic and electromagnetic sources. Effectively, the aIONM system will reduce all forms of electrical interference in the OR environment to negligible levels, permitting uninterrupted recording of cerebral and peripheral biopotentials, even during ESU activation and without signal integrity compromise. The aIONM will introduce an analog electronic technology to IONM that enables noise-free biopotential signal acquisition in the presence of high and unbalanced electrode impedances for both cup and needle-type electrodes. Setup time for clinical and experimental protocols will be reduced to the time required to apply electrodes. It will eliminate scalp site preparation. Importantly, surgical procedures will not be delayed, interrupted or otherwise compromised due to interfernce in the OR. The aIONM will introduce a fundamentally newhardware architecture integrating acomplete,low power computerand LCD display. TheaIONM willprovide a full complement of monitoring and stimulation functions, replacing both portable and "workstation" intraoperative monitors. Multimodal wireless connectivity and other features will further extend its utility for comprehensive IONM. The specific goal of Phase I is to evaluate key system performance elements in both benchtop tests and intraoperatively in human subjects at two independent, university-based centers. PUBLIC HEALTH RELEVANCE The proposed system would find application in routine clinical and experimental acquisition of intraoperative biopotentials. The very high tolerance of the proposed Advanced Intraoperative Neuromonitoring System (aIONM) for high and unbalanced electrode impedances in electrically noisy operating room environments will substantially improve the ability to monitor critical neurophysiological functions during surgical procedures. The aIONM will eliminate intraoperative monitoring disruptions due to electrical noise and thus increase the level of care. Further, the IBMS will also achieve a much higher benefit:cost ratio than existing technologies.
描述(由申请人提供):通常使用颅和外周生物电位来评估各种手术过程中颅神经和外周神经的神经生理完整性。术中神经生理监测(IONM)提供了对神经传递完整性的结果敏感的实时指标,例如体感诱发的潜在幅度和潜伏期。这样的措施动态指导手术程序,并降低术后残疾和并发症的风险。 IONM发现在涉及大脑和脊髓的手术干预措施中广泛使用了一系列疾病,包括与中枢神经系统参与的癌症形式。然而,脑和外围生物电位的水平非常低(降至亚微伏的)信号,这些信号非常容易受到手术室(OR)中一系列电力设备(例如麻醉机,加热设备,尤其是电外科单元(ESUS)(ESUS)的污染)。电磁和静电干扰,包括低频范围(主要是50-60 Hz)和射频(RF)范围限制,并使信号采集和解释变得复杂。实际上,手术程序的开始通常会延迟,并且由于干扰问题而可以中断程序。 ESU激活消除了生物电位信号记录。诱发的潜在平均序列的中断需要重新启动。传统的降噪方法(例如线频率噪声的“缺口”过滤)通常是无效的,并且施加了信号完整性的各种折衷,例如由于靠近信号频率范围而引起的振幅降低和相位变化。 “基线还原”技术可用于最大程度地减少ESU激活和其他瞬态的恢复时间,但根本无法解决信号丢失的问题。提出了高级术中神经监测(AIONM)系统,该系统将对静电和电磁源具有很高的免疫力。有效地,AIONM系统将使或环境中的所有形式的电干扰可忽略不计,即使在ESU激活期间,并且没有信号完整性损害,也可以不间断地记录大脑和外围生物电位。 AIONM将向IONM引入一个模拟电子技术,该技术在杯和针型电极的高电极阻抗的情况下实现无噪声的生物电位习得。用于临床和实验方案的设置时间将减少到应用电极所需的时间。它将消除头皮站点的准备。重要的是,由于OR中的干扰,手术程序不会延迟,中断或以其他方式损害。 AIONM将引入一个基本的Newhardware架构,集成了ACOLLETE,低功率计算机和LCD显示屏。 Theaionm将提供全面的监测和刺激功能的补充,以取代便携式和“工作站”术中监测器。多模式的无线连接和其他功能将进一步扩展其实用程序以进行全面的离子。第一阶段的具体目标是评估台式测试中的关键系统性能元素,并在两个独立的大学中心的人类受试者中进行术中。 公共卫生相关性该提议的系统将在术中生物电位的常规临床和实验习得中找到应用。针对电气嘈杂的手术室环境中高和不平衡电极阻抗的拟议晚期术中神经监测系统(AIONM)的耐受性极高,将大大提高监测外科手术过程中关键神经生理功能的能力。 AIONM将消除由于电噪声而导致的术中监测中断,从而增加护理水平。此外,与现有技术相比,IBMS还将获得更高的收益:成本比。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JAMES P O'HALLORAN其他文献

JAMES P O'HALLORAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JAMES P O'HALLORAN', 18)}}的其他基金

Assessment Validation
评估验证
  • 批准号:
    10766041
  • 财政年份:
    2023
  • 资助金额:
    $ 24.05万
  • 项目类别:
Cerebral Palsy Risk Identification System
脑瘫风险识别系统
  • 批准号:
    10545159
  • 财政年份:
    2022
  • 资助金额:
    $ 24.05万
  • 项目类别:
Cerebral Palsy Risk Identification System
脑瘫风险识别系统
  • 批准号:
    10709554
  • 财政年份:
    2022
  • 资助金额:
    $ 24.05万
  • 项目类别:
Cerebral Palsy Risk Identification System
脑瘫风险识别系统
  • 批准号:
    9769890
  • 财政年份:
    2018
  • 资助金额:
    $ 24.05万
  • 项目类别:
Computerized Assessment by Remote Examiner System (CARES)
远程检查系统计算机化评估(CARES)
  • 批准号:
    7613525
  • 财政年份:
    2009
  • 资助金额:
    $ 24.05万
  • 项目类别:
Computerized Assessment by Remote Examiner System (CARES)
远程检查系统计算机化评估(CARES)
  • 批准号:
    8141230
  • 财政年份:
    2009
  • 资助金额:
    $ 24.05万
  • 项目类别:
Illness Management and Recovery Program: IMR-Web
疾病管理和康复计划:IMR-Web
  • 批准号:
    7677772
  • 财政年份:
    2009
  • 资助金额:
    $ 24.05万
  • 项目类别:
Computerized Assessment by Remote Examiner System (CARES)
远程检查系统计算机化评估(CARES)
  • 批准号:
    7913133
  • 财政年份:
    2009
  • 资助金额:
    $ 24.05万
  • 项目类别:
Computerized Early Dementia Assessment System
电脑化早期痴呆症评估系统
  • 批准号:
    7482842
  • 财政年份:
    2005
  • 资助金额:
    $ 24.05万
  • 项目类别:
Computerized Early Dementia Assessment System
电脑化早期痴呆症评估系统
  • 批准号:
    7586831
  • 财政年份:
    2005
  • 资助金额:
    $ 24.05万
  • 项目类别:

相似国自然基金

基于短肽诱导蚕丝蛋白组装的可控粘附生物粘合剂的制备及粘附性能研究
  • 批准号:
    52303272
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
氮杂环丙烷基聚多硫化物可逆粘合剂的分子设计与制备
  • 批准号:
    22378080
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
多酚功能化壳聚糖基组织粘合剂构建及其能量耗散机制探究
  • 批准号:
    82302389
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多尺度低表面能粘合剂的构筑及织物基传感器稳定性提升机制研究
  • 批准号:
    22302110
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Reconfigurable 3D Origami Probes for Multi-modal Neural Interface
用于多模态神经接口的可重构 3D 折纸探针
  • 批准号:
    10738994
  • 财政年份:
    2023
  • 资助金额:
    $ 24.05万
  • 项目类别:
A one-part free radical initiator system to enable visible light-activated polymerization with post-exposure dark cure and extensive, athermal shadow cure behavior
一种单组分自由基引发剂系统,可实现可见光活化聚合,并具有曝光后暗固化和广泛的无热阴影固化行为
  • 批准号:
    9903283
  • 财政年份:
    2019
  • 资助金额:
    $ 24.05万
  • 项目类别:
A novel low-cost and noninvasive device to measure deep temperature in the body
一种新型低成本无创设备,用于测量体内深层温度
  • 批准号:
    8758405
  • 财政年份:
    2014
  • 资助金额:
    $ 24.05万
  • 项目类别:
A novel low-cost and noninvasive device to measure deep temperature in the body
一种新型低成本无创设备,用于测量体内深层温度
  • 批准号:
    8904688
  • 财政年份:
    2014
  • 资助金额:
    $ 24.05万
  • 项目类别:
A novel low-cost and noninvasive device to measure deep temperature in the body
一种新型低成本无创设备,用于测量体内深层温度
  • 批准号:
    9100864
  • 财政年份:
    2014
  • 资助金额:
    $ 24.05万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了