Cerebral Palsy Risk Identification System
脑瘫风险识别系统
基本信息
- 批准号:10545159
- 负责人:
- 金额:$ 24.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdoptionAdvisory CommitteesBenchmarkingBiometryBirthCephalicCerebral PalsyCertificationChildChildhoodClassificationClinicalClinical assessmentsComplexComputer softwareConsensusDataData SetDatabasesDevelopmentDevice or Instrument DevelopmentDevicesDistalElectronic Health RecordElementsEnsureEnvironmentGestational AgeGoalsHealth PersonnelHuman ResourcesInfantInterventionLiteratureMagnetic Resonance ImagingManualsMethodsMotorMovementMulticenter StudiesMuscle CrampNeonatologyOutcomeOutpatientsPatternPediatricsPerformancePhasePhenotypePositioning AttributePremature BirthPremature InfantProcessProgress ReportsReportingRiskRisk AssessmentRisk FactorsSample SizeSamplingScoring MethodSensitivity and SpecificitySiteStandardizationStrokeSystemTechnologyTestingTimeTrainingUnited StatesVideo RecordingVisualWeightbaseclinical applicationclinical centercomputerizedcomputerized data processingconvolutional neural networkcostdata qualitydesigndisabilityexperiencefield studyhigh riskinclusion criteriakinematicsmachine learning classifiermeetingsneural network classifiernext generationnovel strategiesoperationphysically handicappedsoftware systemsstem cellssuccessultrasoundwireless
项目摘要
PROJECT SUMMARY
Neonatologists are often required to identify infants who are likely to suffer poor neurodevelopmental
outcomes, including Cerebral Palsy (CP). CP is the most common motor disability among children in the United States
and is associated with risk factors including low weight for gestational age, premature birth, and stroke. Although MRI
and cranial ultrasound provide valuable structural information in the preterm period, they have moderate predictive
accuracy for early CP risk identification. Over the past 20 years, numerous studies have validated the clinical potential
of General Movement Assessment (GMA) for early CP risk identification and there is consensus in the literature that
GMA offers the highest accuracy. Stage 1 “cramped synchronized” general movements (CSGMs) spanning 34-48
weeks gestational age (GA) during the “writhing movements” period and Stage 2 “forced, voluntary movements”
spanning 50-59 weeks GA have demonstrated high sensitivity and specificity for developing CP, conjointly ranging
from 80%-98% when performed by extensively trained experts.
Despite its potential, GMA is available in very few clinical centers, as adoption and routine application depend
on the availability of highly trained GMA raters to perform lengthy and costly bedside observations or video review-
based scoring and manual report creation. A Cerebral Palsy Risk Identification System (CPRIS) is proposed that will
be the first to automate GMA for routine application. The CPRIS constitutes a next-generation approach that will
fundamentally transform GMA by replacing rater visual gestalts with objective, systematic, validated movement pattern
classification. Further, the CPRIS potentially offers a means of informing, and assessing the efficacy of emerging stem
cell-based interventions for CP along the early developmental continuum.
Successful implementation of Phase I&II will complete a small form factor, mobile, highly automated
preproduction system for cerebral palsy risk identification that can be readily applied by staff, clinicians, and health
care provider personnel without any form of manual post-processing operations or video file transfer. An integrated
utility will support GMA creation and report sharing with Electronic Health Record (EHR) systems. An application-
specific, fully integrated device will achieve the highest degree of standardization and thus data quality.
In a field study at two prominent Level 3 NICUs, infant movements will be acquired using an “RGB-D”, or 3D
“depth” camera in conjunction with an application- and stage-specific “Depth-Flow” convolutional neural network
(CNN) classifier approach, that requires no infant contact (contrasting with kinematic methods) and captures whole-
body movements. This effort marks the first utilization of such technology to automate GMA. Results will be compared
to consensus determinations of advanced GMA raters in a sample of high risk preterm infants at both Stages 1 & 2.
Viability of the new approach will be determined by ROC-AUC analyses, with a threshold for success of ≥ 0.90
accuracy. Overall results will be evaluated by an Advisory Committee of recognized experts in the fields of
neonatology, pediatrics, cerebral palsy, GMA and biostatistics.
项目摘要
新生儿学家通常需要识别可能遭受不良神经发育的婴儿
结果,包括脑瘫(CP)。 CP是美国儿童中最常见的运动残疾
并与危险因素有关,包括胎龄低体重,早产和中风。虽然MRI
颅骨超声在早产期提供有价值的结构信息,它们具有适度的预测性
早期CP风险识别的准确性。在过去的20年中,许多研究验证了临床潜力
一般运动评估(GMA)用于早期CP风险识别,文献中达成共识
GMA提供了最高的精度。阶段1跨越34-48的“狭窄同步”通用运动(CSGM)
在“写作运动”期间和第2阶段“强迫,自愿运动”期间妊娠年龄(GA)
跨越50-59周的GA表现出高灵敏度和发展CP的特异性
由经过广泛培训的专家执行时,从80%-98%开始。
尽管具有潜力,但GMA在很少的临床中心中可用,因为采用和常规申请取决于
关于训练有素训练的GMA评估者的可用性,以执行冗长且昂贵的床边观察或视频评论 -
基于评分和手动报告的创建。提出了一个脑瘫风险识别系统(CPRIS)
成为第一个自动化GMA进行常规应用程序的人。 CPRI构成了下一代方法
从根本上通过客观,系统,有效的运动模式替换评估者视觉格式塔来改变GMA
分类。此外,CPRIS有可能提供一种通知和评估新兴STEM的效率的方法
基于细胞的CP沿着早期发育连续体的干预措施。
第一阶段和第二阶段的成功实施将完成一个小型,移动性,高度自动化
脑性麻痹风险识别的预生产系统可以由工作人员,临床医生和健康很容易应用
护理提供者的人员没有任何形式的手动后处理操作或视频文件传输。一个集成的
实用程序将支持GMA创建并与电子健康记录(EHR)系统报告。申请 -
特定的,完全集成的设备将达到最高程度的标准化,从而达到数据质量。
在两个著名3级NICUS的现场研究中,将使用“ RGB-D”或3D获取婴儿运动
“深度”摄像机与应用和阶段特定的“深度”卷积神经网络结合
(CNN)分类器方法,不需要婴儿接触(与运动学方法形成鲜明对比),并捕获了整个
身体运动。这项工作标志着这种技术首先利用了自动化GMA。结果将被比较
在两个阶段和第2阶段的高风险早产剂样本中对高级GMA评估者的共识确定。
新方法的生存能力将通过ROC-AUC分析确定,成功的阈值≥0.90
准确性。总体结果将由公认专家的咨询委员会评估
新生儿学,儿科,脑瘫,GMA和生物统计学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAMES P O'HALLORAN其他文献
JAMES P O'HALLORAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAMES P O'HALLORAN', 18)}}的其他基金
Computerized Assessment by Remote Examiner System (CARES)
远程检查系统计算机化评估(CARES)
- 批准号:
7613525 - 财政年份:2009
- 资助金额:
$ 24.31万 - 项目类别:
Computerized Assessment by Remote Examiner System (CARES)
远程检查系统计算机化评估(CARES)
- 批准号:
8141230 - 财政年份:2009
- 资助金额:
$ 24.31万 - 项目类别:
Illness Management and Recovery Program: IMR-Web
疾病管理和康复计划:IMR-Web
- 批准号:
7677772 - 财政年份:2009
- 资助金额:
$ 24.31万 - 项目类别:
Computerized Assessment by Remote Examiner System (CARES)
远程检查系统计算机化评估(CARES)
- 批准号:
7913133 - 财政年份:2009
- 资助金额:
$ 24.31万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Implementing SafeCare Kenya to Reduce Noncommunicable Disease Burden: Building Community Health Workers' Capacity to Support Parents with Young Children
实施 SafeCare Kenya 以减少非传染性疾病负担:建设社区卫生工作者支持有幼儿的父母的能力
- 批准号:
10672785 - 财政年份:2023
- 资助金额:
$ 24.31万 - 项目类别:
Core A: Administrative, Career Development, and Research Integration Core
核心 A:行政、职业发展和研究整合核心
- 批准号:
10630466 - 财政年份:2023
- 资助金额:
$ 24.31万 - 项目类别:
Pragmatic Implementation Science Approaches to Assess and Enhance Value of Cancer Prevention and Control in Rural Primary Care
务实实施科学方法评估和提高农村初级保健癌症预防和控制的价值
- 批准号:
10942883 - 财政年份:2023
- 资助金额:
$ 24.31万 - 项目类别:
Bispecific Antibody Maintenance Therapy after Allogeneic Bone Marrow Transplant
同种异体骨髓移植后的双特异性抗体维持治疗
- 批准号:
10572777 - 财政年份:2023
- 资助金额:
$ 24.31万 - 项目类别:
Remote Tai Chi for Knee Osteoarthritis: an Embedded Pragmatic Trial
远程太极拳治疗膝骨关节炎:嵌入式实用试验
- 批准号:
10649920 - 财政年份:2023
- 资助金额:
$ 24.31万 - 项目类别: