An exploration of the mechanisms of naturally occurring limb muscle loss during neonatal development
新生儿发育过程中自然发生的肢体肌肉丧失机制的探索
基本信息
- 批准号:9882964
- 负责人:
- 金额:$ 16.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgingAmericanAnatomyAnimal ModelAnimalsApoptoticAssesAtrophicAutophagocytosisBiological ModelsBirthCell DeathCell NucleusCell membraneCell physiologyCellsCellular biologyCharacteristicsComplementDNA FragmentationDataDegenerative DisorderDevelopmentDimensionsDipodidaeDiseaseDistalElectroporationEventFoundationsFunctional disorderGene ActivationGene ExpressionGoalsHindlimbHumanImmune responseInjuryInvestigationLaboratoriesLaboratory Animal ModelsLaboratory miceLimb structureLiteratureLysosomesMaintenanceMediatingMissionMolecularMusMuscleMuscle CellsMuscle DevelopmentMuscle ProteinsMuscle functionMuscular AtrophyMyofibrilsNational Institute of Arthritis and Musculoskeletal and Skin DiseasesNatural regenerationNecrosisNeonatalOrganismOutcomePathway interactionsPhasePhenotypeProcessProteinsResearchRodentSarcomeresSkeletal MuscleSolidSpecificityStructural ProteinSystemTestingTimeTissuesTranscriptional ActivationUbiquitinWorkbasecell dimensioncomparativedesigndevelopmental plasticitydifferential expressionexpectationexperimental studyfootgene functionhuman diseaseinsightloss of functionmouse modelmulticatalytic endopeptidase complexmuscle degenerationmuscle formmuscular structuremyogenesisnovelpostnatalprotein expressionrepairedskeletalstem cellstranscriptome sequencing
项目摘要
Millions of Americans are impacted by muscle loss – as an effect of disease, injury, or aging – and yet
there is currently no cure for any form of muscle degeneration. Consistent with the mission of the National
Institute of Arthritis and Musculoskeletal and Skin Diseases, it is therefore essential to understand muscle
development and degeneration in the broadest context. The Cooper lab has identified naturally occurring
muscle loss during development of a bipedal desert rodent, the lesser Egyptian jerboa. Aspects of the cellular
process, which occurs early and rapidly after birth of the animal, defy predictions based on decades of muscle
research in traditional model organisms and highlight gaps in the current state of understanding.
Most surprising, despite the rapid and complete loss of muscle structural protein expression, there is no
detectable evidence of cell death or an immune response in the jerboa foot. Early stages of muscle maturation
appear to proceed normally, but nascent muscle structure subsequently disassembles by an as yet unknown
mechanism. Muscle progenitor cells persist until late in the phase of muscle cell loss, but they are insufficient
to restore muscle. A deep understanding of this remarkable phenotype stands to transform our
understanding of the cellular and molecular mechanisms of sarcomere disassembly and to potentially
identify unexpected developmental plasticity of neonatal muscle cells.
Specifically, the First Aim will address the perplexing observation that no characteristic features of
multiple mechanisms of cell death are detected concurrent with widespread and rapid muscle cell loss. We will
apply an electroporation-mediated cell tracking approach to follow the fate of the muscle lineage after muscle
cells can no longer be identified by expression of muscle proteins. The Second Aim will implement an RNA
sequencing approach to identify the cellular and molecular processes unfolding at the initiation of muscle loss.
Each Aim investigates an aspect of jerboa foot muscle cell loss that potentially intersects with human muscle
degenerative disorders yet here occurs in the context of normal development of the organism.
The experiments outlined in this proposal are essential first steps toward a broader goal of
understanding the molecular mechanisms that underlie the striking anatomic specificity of hindfoot muscle loss
in the jerboa. Since the fundamentals of cell and tissue function are conserved across species, or indeed
traditional model organisms would have no value, answers to the questions outlined in this proposal will inspire
explorations of new dimensions of cell biology in a variety of tissues and contexts.
数以百万计的美国人因疾病、受伤或衰老而受到肌肉损失的影响,但
目前尚无法治愈任何形式的肌肉退化,这与国家的使命是一致的。
关节炎、肌肉骨骼和皮肤疾病研究所,因此了解肌肉至关重要
库珀实验室在最广泛的背景下发现了自然发生的发育和退化。
双足沙漠啮齿动物(小埃及跳鼠)发育过程中的肌肉损失。
这个过程在动物出生后早期和迅速发生,违背了基于数十年肌肉的预测
对传统模式生物的研究,并强调当前理解状态的差距。
最令人惊讶的是,尽管肌肉结构蛋白表达迅速且完全丧失,但没有
跳鼠足部肌肉成熟早期阶段的细胞死亡或免疫反应的可检测证据。
似乎正常进行,但新生的肌肉结构随后被一种未知的物质分解
肌肉祖细胞持续存在到肌肉细胞丧失阶段的后期,但它们还不够。
对这种非凡表型的深入了解将改变我们的肌肉。
了解肌节分解的细胞和分子机制,并有可能
识别新生儿肌肉细胞的意外发育可塑性。
具体来说,第一个目标将解决令人困惑的观察结果,即没有任何特征
我们将检测到多种细胞死亡机制与广泛而快速的肌肉细胞损失同时发生。
应用电穿孔介导的细胞追踪方法来追踪肌肉后肌肉谱系的命运
细胞不再能够通过肌肉蛋白的表达来识别。第二个目标将实现 RNA。
测序方法来识别肌肉损失开始时展开的细胞和分子过程。
每个目标都研究了跳鼠足部肌肉细胞损失的一个方面,该损失可能与人类肌肉相交叉
退行性疾病在有机体正常发育的情况下仍会发生。
本提案中概述的实验是实现更广泛目标的重要第一步
了解后足肌肉丧失的显着解剖学特异性背后的分子机制
因为细胞和组织功能的基本原理在不同物种中都是保守的,或者说确实如此。
传统的模式生物没有任何价值,对本提案中概述的问题的回答将启发
在各种组织和环境中探索细胞生物学的新维度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kimberly Lynn Cooper其他文献
Kimberly Lynn Cooper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kimberly Lynn Cooper', 18)}}的其他基金
Development of approaches to apply CRISPR/Cas9-mediated gene conversion to model complex genetic traits in mice
开发应用 CRISPR/Cas9 介导的基因转换来模拟小鼠复杂遗传性状的方法
- 批准号:
10565297 - 财政年份:2023
- 资助金额:
$ 16.69万 - 项目类别:
Engineering and validation of two conditional multi-gene mouse models of skeletal development
两种条件多基因小鼠骨骼发育模型的工程和验证
- 批准号:
10043332 - 财政年份:2020
- 资助金额:
$ 16.69万 - 项目类别:
Engineering and validation of two conditional multi-gene mouse models of skeletal development
两种条件多基因小鼠骨骼发育模型的工程和验证
- 批准号:
10215395 - 财政年份:2020
- 资助金额:
$ 16.69万 - 项目类别:
Engineering and validation of two conditional multi-gene mouse models of skeletal development
两种条件多基因小鼠骨骼发育模型的工程和验证
- 批准号:
10043332 - 财政年份:2020
- 资助金额:
$ 16.69万 - 项目类别:
Leveraging comparative genomics to elucidate the genetic determinants of limb skeletal proportion
利用比较基因组学阐明肢体骨骼比例的遗传决定因素
- 批准号:
10164722 - 财政年份:2019
- 资助金额:
$ 16.69万 - 项目类别:
Leveraging comparative genomics to elucidate the genetic determinants of limb skeletal proportion
利用比较基因组学阐明肢体骨骼比例的遗传决定因素
- 批准号:
9762600 - 财政年份:2019
- 资助金额:
$ 16.69万 - 项目类别:
Leveraging comparative genomics to elucidate the genetic determinants of limb skeletal proportion
利用比较基因组学阐明肢体骨骼比例的遗传决定因素
- 批准号:
9895624 - 财政年份:2019
- 资助金额:
$ 16.69万 - 项目类别:
Leveraging comparative genomics to elucidate the genetic determinants of limb skeletal proportion
利用比较基因组学阐明肢体骨骼比例的遗传决定因素
- 批准号:
10382419 - 财政年份:2019
- 资助金额:
$ 16.69万 - 项目类别:
Leveraging comparative genomics to elucidate the genetic determinants of limb skeletal proportion
利用比较基因组学阐明肢体骨骼比例的遗传决定因素
- 批准号:
10599856 - 财政年份:2019
- 资助金额:
$ 16.69万 - 项目类别:
MicroRNA Function in the Developing Vertebrate Limb
MicroRNA 在脊椎动物肢体发育中的功能
- 批准号:
7054901 - 财政年份:2006
- 资助金额:
$ 16.69万 - 项目类别:
相似国自然基金
ALA光动力上调炎症性成纤维细胞ZFP36抑制GADD45B/MAPK通路介导光老化皮肤组织微环境重塑的作用及机制研究
- 批准号:82303993
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
湿热老化下的CFRP胶-螺连接结构疲劳失效机理研究
- 批准号:52305160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
YAP1-TEAD通过转录调控同源重组修复介导皮肤光老化的作用机制
- 批准号:82371567
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
角质形成细胞源性外泌体携载miR-31调控成纤维细胞ERK通路抗皮肤老化的作用机制
- 批准号:82373460
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Stopping Hydroxychloroquine In Elderly Lupus Disease (SHIELD)
停止使用羟氯喹治疗老年狼疮病 (SHIELD)
- 批准号:
10594743 - 财政年份:2023
- 资助金额:
$ 16.69万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 16.69万 - 项目类别:
in situ Epigenetic Profiling of Single Cells in Kidney - Kim Diversity Supplement 2023
肾脏单细胞原位表观遗传分析 - Kim Diversity Supplement 2023
- 批准号:
10849346 - 财政年份:2023
- 资助金额:
$ 16.69万 - 项目类别:
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
- 批准号:
10665905 - 财政年份:2023
- 资助金额:
$ 16.69万 - 项目类别: